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. . .And I saw fhe sacred hoop of my people was one of rk m y  hoops fhof d e  ON circle, 
wide as dayligkr and as starlight, and in fhe center grew one mightyjowering free fo shelter all 
fhe children of one moiher and one farher. 

-Black E&, Oglala Sioux 

Abstract. An algebraic binary opention is introduced into quasicrystals admitting five-fold 
symmetry. In terms of his  many quasicrystals displaying full pentagonal or icosahedral 
symmeuy are seen to be finitely generated, Examples are given in dimensions 1, 2, 3 and 
4. The operation of left quasicrystd addition is affme-linear. The monoid generated by these 
opentors is discussed and a presentation for it given in the generic case 

1. Introduction 

In this paper we wish to point out that a great variety of quasicrystals admitting five- 
fold symmetries are closed under an algebraic binary operation that we call quasicrystal 
addirion. In terms of this operation many infinite quasicrystals displaying full pentagonal 
or icosahedral symmetry can be finitely generated. 

For the purposes of this paper we mean by quasicrystals certain point sets in real n-space 
R". Initially the concept is used loosely, since no generally accepted definition of the word 
exists. Our main requirement is that our sets C possess the Delaumyproperfy: there exists 
positive constants rl and r2 such that 

for all x E C the ball B,(r l )  of radius rl about x meets Z 
only in x : C n Bz(r l )  = (x). for all x E C 
for all x E ~ m ,  z n B ~ ( Q )  # 0. 

(1.1) 

(1.2) 

: F -+ F be the automorphism 
determined by 1/5 H -6. The subring R := Z[T] = [a + b t  I a, b E Z} of F is the 
ring of integers of F .  We recall that 

We let r := (1 + 4 3 ) / 2 ,  F := Q[T], and let 
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An R-lattice in R" is an R-submodule L of 8" of  rank n that spans R". All of OUT 
quasicrystals will consist of subsets of points from R-lattices. Quasicrystal addition, I-, is 
defined by 

2 X I - y = r x - r y .  I 

What makes this relevant to quasicrystals is the close relationship to expressions of the form 

5"X - T'y  

which are in fact convex combinations of x and y .  We define quasilattices to be Delaunay 
subsets of R-lattices that are closed under t. We provide a number of examples of such 
sets in dimensions 1, 2, 3 and 4 whic$ show the ubiquity of such sets. 

The afhe-linear operators T, : y ,  H ( x  t. y )  are particularly interesting. We view 
the monoid of these operators as a generalization to the quasicrystal setting of the group of 
translations of a lattice. The underlying identity that relates these operators is 

~ 

7'' Ty Ty Ty Tx Tx ~~, 

which we think of as a replacement for commutativity. In section 6 we prove that if B is a 
base for the R-lattice L then these identities completely describe the monoid 'TB generated 
by the Tx, x E B.  

In section 3 we establish a simple geometric condition that can be used to show that 
certain quasicrystals defined by acceptance domains are generated by finite sets of elements. 
In section 4 we examine the one-dime'nsional cases in detail. 

The illustrations accompanying the text were generated by the software package simpLie 
[41. 

2. Quasicrystal addition 

Let L be a free R-module and let LF ;= F 8 L .  In the case that L is an R-lattice, L F  will 
be considered simply as the F-span of L in W". 

We define quasicrystal addition on L F  by 

x t y := - r y  

for all x .  y E L .  For each x E L F  we~then have the operator 
i 
~ 

Tx : L F  + L F  

y H (x  I- y )  = 2 x  - ry.  
I 

Observe that T, is an affine-line1 mapping of L F .  Quasicrystal addition is neither 
associative nor commutative. However we have: 

Proposition 2.1. For all x ,  y ,  U E L F :  
(i) TJ ( x )  = x t x = x; 
(ii) x t ( x  t y )  = y t x ;  
(vi) T,T; = T,T:; 
(iv) ( x  + U) t ( y  + U) = (x  I- y )  + U 

~- 
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Proof. These are all trivial to verify. For (iii) we note that by using (1.3) 

- s ( rZy  - T ( T  y - rz))  2 T,T,ZZ = 
3 = T2X + (s4 - T 3 ) y  - 5 z 

= r2(x + y) - T z 3 

which is symmetric in x and y. 0 

The important property of proposition 2.l(iv) is called translation invariance. 
A subset B of L F  is closed under I- if x I- y E E ,  for all x ,  y E B.  For non-emply 

subsets A ,  B c L F  we define 

( A ;  E)' := IT,,. . . T,(b)  : ai, . . . ak E A ,  b E B , k  2 0) 

where it is understood that we are taking the elements of B when k = 0. We call A the set 
of active generators and B the set of passive generators in ( A ;  5)'. We define 

A' = (A; A)'. 

We say that A replicates a set B or B is replicated by A if 
(i) T,(B) c E ,  for all a E A, 

Figure 1 illustrates the growth of a set (A; A)' where A is the set of vertices of a 
regular pentagon. Beginning with A we see successively A I- A, A k (A I- A), and 
A I- (A k (A I- A)).  

In order to understand how quasicrystal addition can be introduced naturally into the 
study of quasicrystals, it is necessary to formulate the cut and project method in terms of 
semilinear maps on L. 

It is simplest to begin with the case L = R and the automorphism ' : R -+ R. Since 

(ii) UoEA T(B) = B.  

R = Z+  ET 2: Z x Z c B x W 

R may be viewed either as a one-dimensional R-module or a twc-dimensional %module. 
In terms of the standard dot product on Wz , the two vectors 

where c := (1 + sz)-'/2 

form an orthonormal basis and we have the projection maps 

c(1, r ) ,  c'(1,r') 

(a, b) - c(a + 56) 

(a ,  b) H c'(a + r'b). 

From our point of view, the scaling factors c and c' are irrelevant and we prefer to use 

n, : ( a ,  b) H (a + Tb) 

and 

kL : (a, b) H (a + T'b). 
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.. . : 

Figure 1. The sets A, A I- A. A t ( A  t A), and A k ( A  I- ( A  I- A))  illustrating the growh of 
(A: A )  where A is fhe set of vertices of a pentagon. 

Thus the composite maps 

where the last map is either n, or JC, , are 

a f b r - a f b r  

and 

a + br H a + br’ =(a + br)’ 

respectively. Thus JC, consists of viewing R as a subset of W and xl. is then simply the 
automorphism ‘. 

The essence of the cut and project method is to select a suitable point-set Z in L (= R 
in this case) by imposing a bounded set with non-empty interior as the target space of xL. 
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Example 2.2. Let P be an interval (= convex subset) of R. We define 

Zp = Z p ( R )  = [ X  E R : X' E P), 

We claim that Zp is closed under I-. In fact, for x ,  y E Zp, 

(r'x - ry)' = ( 5 ' ) ' ~ '  - r'y' = r % +  r-ly'. 

Since 0 < r-', r-I < 1 and r-* + r-I = 1, we have (5% - ry)' E P by the convexity of 
P. 

Observe also that r Z p  c Zp provided that r'P c P. If P is a finite interval with 
non-empty interior then Zp is a Delaunay set (see proposition 2.2 below). 

To generalize this example we introduce the following algebraic siructure: 

Definition 2.3. An (R,')-module is a pair L = ( L , * )  consisting of an R-lattice 

L = e;=, Rej c R" 

together with a mapping 

" : L + R 8 "  

satisfying 

(x  + y)" = x*  + y* 

(rx)* = r'x* 

L* spans R". 

for all x ,  y E L, r E R 

Such a mapping is necessarily injective. 

A particularly important instance of this is the pair 

R = (R , ' ) .  

In many cases we have L* c i, but there are important cases (see the icosian ring 
below) in which this does not happen. Nor need * be an operator of order 2, although this 
is often the case. We will assume in the following that R" is equipped with a Euclidean 
norm II 11. 

An easy way to construct a semilinear mapping ' on L is to define it by 

j=l j-1 

We will continue to view L p  (and L and L') as subsets of W. 

Example 2.4. Let P be any subset of R". We define 

c p  = Zp(L); = [ X  E L : x*  E P). 

Precisely the same type of argument that we used in example 2.1 shows that if P is convex 
then I;p is closed under k. We call P the acceptance domain of the set Z p ,  
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The constuction of Cp in exampIe 2.4 can be interpreted as a form of the cut and 
project method, as we pointed out in tAe special case of example 2.2. Thus a large number 
of quasicrystals that appear in the literature can be acconunodated by example 2.4. 

Le"0 2.5. Let L = ( L , * )  be an (R',* )-module. Then: 
(i) L and L* are dense subsets of R"; 
(ii) for any rl , rz >~ 0, 

{ x  E L : 11x11 < rl. IIx'II < rzl 

is finite. Furthermore, for small enough rl this set is reduced to (0) 

Proof. (i) follows from the fact that R is dense in R. For (ii) we observe that forx  = Zcjej, 
cj E R, the conditions llxll < rl and 'IIx'II < rz simultaneously bound cj and cj for each 
j .  But the number of elements a +'br with a ,  b E Z satisfying la + brl < M I  and 
la + br'l < Mz is finite for all M I ,  > 0. Furthermore, if M I  is small enough the only 

0 solution to these inequalities is a = b = 0. 

Definition 2.6. An quasilanice is a subset A of an R-lattice in R" satisfying: 
(i) A is closed under k; 
(ii) A is a Delaunay set in W". 
The R-module K generated by A in L is called the ambient space of A. 

Proposition 2.7. Let I: be an (R,*)-module in R" and let P c R" be a bounded convex 
subset with non-empty interior. Then kp ( I : )  is a quasilattice. 

Proof. 
that r1 + 0 as s + 0 and such that 

C p ( L )  is closed under t by (2.4). Let s > 0. There exists rl = q(s) > 0 such 

11 Cu,e, l l  < s -1 aj I< rl for all j 

There exists ra such that 

Let x, y E Xp( I : ) .  Write x - y = Cuje j .  a, E R. Suppose that Ilx - yll < s. Then 
for all j = 1, .. , ,n 

[ aj [ < r l  and I a: I< r2, 

Using lemma 2.5 we obtain (1.1) for Zp(I:). 
Since L' is dense and P has a non-empty interior, there exist V I ,  . . . , U. E Cp(,C) 

that span R". Using proposition 4.4, which we will prove below, we see that (0, I J ~ ] ~  is a 
Delaunay set. Thus there is an r, > '0 such that any interval of length at least r, in Ruj 
contains a point of (0. U,)'. Using this for all j = 1 , .  . . , n we obtain (1.2) for E&). 0 



The algebriac theory of quasicrystals 121 

Example 2.8. Inside the real quaternions 

W = R l  f Ri i R j  + R k  

we consider the subring WF = F1 + Fi + F j  + F k .  we define * on WF as the (F,')- 
semilinear mapping that is uniquely specified by I* = I, I E (1, i, j ,  k ) .  The 120 unit 
quaternions 

(f.l,O, 0,O) and all permutations 

&(*l, f l ,  3 3 ,  f l )  

;CO, 51 ,  fr', &tr) and all even permutations 

called icosians form a finite group I isomorphic to the binary icosahedral group. The Z- 
span of I is a ring H called the icosian ring. The icosian ring is one of the (all conjugate) 
maximal orders of WF. The pair Z = (E,*) is an (R,*) module. 

If P is any bounded convex subset of W with non-empty interior we may form the 
quasilattice X p Q  = ( x  E 1 I x* E P). (See [3,5] for more details when P is an open 
ball.) 

There are any number of quasilattices that we may form here that possess remarhble 
symmetry but about which we know virtually nothing. For instance, the set I forms the 
vertices of the four-dimensional polytope {3,3,5) [2]. The quasilattice Xp.3.51Q contains 
the quasilattices Jk and (I; I U [O))'. How do they compare? 

:= IIn(RifRj+Rk) gives rise to three-dimensional quasilattices. If 
S is a set of vertices with icosahedral symmetry then S' and { S; S U [O]]' are quasilattices 
with icosahedral symmetry. In general we know little about these. In the case that the 
vertices are the 30 (resp. 120) points of the root system of type H3 (resp. H4) we have a 
result analogous to the claims of propositions 5.1 and 5.3 [l]. 

Pmposifion 2.9. 
and the ambient space is an R-lattice in L.  

PmoJ Since A is a Delaunay set, it cannot lie in a proper subspace of R". Thus A contains 
a basis of R" and hence also of LF. It follows that the ambient space is a submodule of 
rank n. 0 

Definition 2.10. Let A , ,  A2 be quasilattices with ambient spaces L I  and LZ respectively. 
An ajJine mapping of LI into LZ is a mapping q5 : Lr + LZ for which there is an R-module 
map 84 : L1 -+ Lz such that 

Similarly the set 

Let A be a quasilattice in the R-lattice L. Then the F-span of A is L F  

q5b + U) = @ ( X I  + W U )  

for all x ,  v E L .  
A homomorphism of A I  into A2 is a mapping q5 : L I  + LZ satisfying: 
(i) q5 is an aiine map; 
(ii) 4 ( A d  C Az. 
If L I  = LZ then it  is an endomorphism. It is an isomorphism if 4 is bijective and 

@(A,) = Az, We write A1 1: Az. 
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Let $ be a homomorphism from A ,  into Az. Let $(O) = a E Lz. Then 

@ ( x )  = @(O + x )  = a - a@(x) for all x E L,. 

Then for all x , y  E A, ,  

$ ( M Y ) )  = $ ( x  Y) = W 2 X  - ry) 

= a + a$(rZx - ry) 

= a  + r2a$(x) - ra$(y) 

= $(.4 k $(Y) = T+(X)($(Y)) .  

Example 2.11. If A is a quasilattice in L then: 
(1) A Y A + U, for all U E L ;  
(2) for all x in A, T, is an endomorphism of A. 

Remark 2.12. If a quasilattice A is closed under central symmetry (A = -A) then we can 
define another binary operation 

( x ,  y) +-+ 7% + r y  

on A and obtain a new set of operators 

S, : y H r2x + r y .  

It is intuitively suggestive to think of these S,'s as quasicrystal variants (when r*=' l )  of 
the operators 

L, : y H x + y  

that define the fundamental symmetries of lattices. Form this viewpoint, the rnonoid M 
generated by the operators S,, x E A becomes the natural analogue of the group of 
translations of a lattice. The basic identity 

SXS, = S;S. for all x, y E A 

then becomes the quasilattice analogue of the commutatitve law 

L,Ly = L,L,. 

3. Replication 

In this section we give a simple geomet condition for replication. 
Let L = ( L ,  *) be an (R, *) module in R" above. It is straightforward to verify: 

Lemma 3.1. Let P ,  Q c R". Then: 
(i) Czip  = ( r ' )kCp,  for all k E 25; 
(ii) C,I.+P = A + E p ,  for all h E 'L; 
(iii) C p  U CQ = Zpua. C p  fl C Q  = Z P ~ Q .  0 
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Proposition 3.2. Let P be a closed bounded convex subset of E%" with non-empty interior. 
Let S be a finite subset of L. Then S is replicating for Cp if and only if 

Proof. S replicates C p  

using lemma 3.1 several times. 
If S is replicating for Cp then T P  and u(r-'s* + P) are closed regions in R" that 

determine the same set of points in L .  We wish to show that they are equal. Suppose that 
y E T P  but y $ u(r-'s" + P). Then there is an open neighbourhood N of y in E%" that 
lies entirely outside of U(r-'s* + P). Since T P  is convex and contains an open ball of 
R", it is easily seen that N n r P  contains a non-empty open subset U .  Since L* is dense in 
R", L' n U # 0. Any point x E L with X *  E L* n U lies in C,p but not in Zu(r-Ls.+P), a 
conwadiclion. Thus r P  c U(T-'S* + P). A similar argument gives the reverse inclusion. 

0 

Proposition 3.3. Let P be a closed bounded convex region in E%". Suppose that S is a 
finite subset of R" such that the replicating condition (RC) holds for S and P. Let 

x := ( X  E C p  I llXll < T3p] 

where p := max(llsll I s E SJ. Then X is finite and Zp = (S; X)+. 

Proof. The set X is finite by lemma 2.5. By proposition 3.2, C p  = U,,ss I- Zp. Let 
x E C p  be fixed and suppose that IIxII > T3p. We can now write x = s I- y = T,(y) .  We 
have 

1 
X = 7's - S y  j T y  = T  S - - X  

* TllYll < T211sll + IbII 
* IIYII < ~ P + T - ' I I X I I  <(T-*+T-I)II~ = 11x11. 

In this way we replace x by an element of smaller norm. Since by lemma 2.5 ( z  E ZP I 
llzll c IlxII) is finite for each M 2 0, after a finite number of repetitions of this argument 
we obtain a point z E X and a sequence S I ,  . . . , sk of elements of S with x = TgA . . . T,,(z). 
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4. One-dimensional quasilattices 

Consider the (R*)-module 72. Let a E R and define 

where [O,a] is the closed interval with end points 0 and a. Since 
r[O, a ]  = [O, a ]  U (T-*a  + 10, a ] )  

we see that (RC) holds with S = [O, a'] and by proposition 3.3 
x ( a )  = ((0, a']: x)' 

with 

S Berman and R V Moody 

I:W = I:[o..I(R) = Ix E R I x' E [O,alJ 

x = IX E I:(a) I I I ~ I I  < C ~ I I ~ I I I .  

If a = 0 then I: = (0).  The most important case is a = 1. Then a short calculation shows 
that X = [o, 1, -r, r 2 ,  -731. Since 

we have: 

Proposition 4.1. 

- 7 = To(1) 7' = %(-7) - r3 = To(7') 

I:,o,l](R) = (0, l]', 

We have the following explicit description of I:,o,ll(R). 

(i) I:p,l](R) = 11) U {rbs-'] + b7 : b E Z], where rl is the roof function ([cl is the 

(ii) ((0, I )  : (0))' = [rbr-'] + br  : b E Z]. 

Proposition 4.2. 

least integer not less than c); 

In particular, Clo,ll(R) and ((0,  11 : [d])' are Delaunay sets. 

Proox x E I: ,O,I](R) 
b = 0, a = 0,1, we have 

x = a  + or, 0 < a + b7' < 1, a. b E Z With the exception 

O < a + b t ' < l ~ O < a f b r ' c l  

w a > -bs' > a - 1 

e=, rb7-1i =a. 
This proves (i). Now we observe that 1 I- 1 = 1 and 0 I- 1 = -T = 1 I- (1 I- 0). Thus 
in (i) we need the number 1 in the passive set only to generate 1 itself. Furthermore, if 
1 is omitted from the passive set then it can no longer be generated. This follows from 
inequalities 11.4 I- b/[ > JJbJI for k = 0,'l  provided that Ilbll > r3 and inspection of the first 

0 

Notation 4.3. Let L be an R module. Let U ,  w E L ,  U # w .  Then := (U, w]',  
I:" := [O, U]'. In particular, CI c R is defined to be (0, 1)'. By proposition 4.1, 

few values of generated in ([O, 11 : (Ob'. 

I:l = I:[O,Il(R). 

Proposifion 4.4. 
particular is a Delaunay set. 

Proof, 

Let L be an R-module and let U, w E L, U # w .  Then &. In 

Consider the mapping q5 : R -+ L defined by $ ( r )  = U + r ( w  - U). This maps 
0 

Thus in any quasilattice, the subset generated by any two distinct elements under I- is 

(0, 11' bijectively onto {U, wl'. 

a copy of X I ,  
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5. The cyclotomic integers Z[ezri'5] 

Let < := eZlril5 and consider the cyclotomic field Q[c] and its ring of integers Z[<] = 
E;*Z<j c C N R2. We have di%Q[<] = ran!&E[r] = 4, the basic relation among the 
powers of < being 

0 = 1 +{ + p + p  + 5 4 .  

The Galois group G = Gal(Q[{J/Q) _N (Z/SZ)' is cyclic of oider 4 with generator defined 
by < H t2.  Since r = -(c2 + t3) and r' = -(< + t4) we see that 

Q[<] n IW = Q[r] Z[<] n a = Z[r]  = R 
and * induces the automorphism ' on Z [ T ] .  Thus the pair 2[<1 = (Z[<],*) is an ( R , * ) -  
module of rank 2 in a natural way. 

We let P5 be the (solid) pentagon with vertices S5 := { I .  < . < 2 , < 3 , < 4 ] .  Then S;; = S5 
and geometrically it is easy to see that r P5 = Uses r-'s* + 9. 

. . . .  . . . . . . . .  . .  . . . .  . .  . .  b. . .  
E* a 1  2 3 . . .  

' d  . . 
. .  

. .  . ... 

i . . . . . . . . . . . .  
. . . . . . . . . .  . .  . . . . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . . . .  

. . . . . . . . .  

. . . . .  . .  
. .  

Figure 2. Quasilattices Zp,(Z[tl) and Ept0(Z[<l). The points labelled 1 through 10 are 
generated by the operators T,. .... T, acting on (0. a. b, e ,  d ,  e) (see the lable above proposition 
5.1). The poinls of Z P , ~ ( Z [ ~ ] )  shown here (wmplete out to radius 7) are also obtained after 
two iteralions of the operatos f i ,  k E Sm, on the sec Sin. 

Thus Zps(2[<]) = (S5; X)', where X = (w E Zp5  I 1x1 < r3].  Figure 2 illuskates 
the entire set of poinrs of C p  with 1x1 < r3. It is straightforward to see that in fact we 
need only the points S5 U (0) as passive generators. The following table shows the requisite 
calculations for the points indicated by the numbers 1 through 12. 

(1) T , T , ~ ( O )  = ra (2) T.(O) = ,*a 

(3) TbT,(O) = r3u (4) ~,2(0) = -rc 

(5 )  T,(rd) = T,T,T:(O) = T:TZ(O) (6) To(c) 

(7) T,(LJ) = -r2c (8) T;T:(O) 

(IO) T,T:(o) = -r 3 c (9) T,zT:(o) 

(11) T:T,Z(O) (12) Te(c). 
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Proposition 5.1. The set of points x of Z[5] such that x* lies in tke closed pentagon with 
vertices S = (1, 5, C3. t4, C 5 ]  is generated by the action of T I ,  . . . , T,, on the set S5 U IO). 

Remark 5.2. The quasilattice S: consists of all points of E,(%[(]) of the form raj(', 
where E a j  = ](mod 5 ) .  

S B e r m  and R V Moody 

A word about terminology: mathematical crystals are not lattices, but have the 
underlying symmetry of lattices. For this reason we have called our algebraic objects 
quasilattices rather than quasicrystals. The points of Penrose tilings have a right to be 
called the prototypes of all algebraic quasicrystals; they have an underlying symmetry of 
quasilattices. 

Next consider the decagon PLO = P5 U -P5 with vertices Slo = S5 U -ST. The set of 
points of Cp,,(Z[5]) with 1x1 < r3  is illustrated in figure 2. In this case Slo U IO) suffices 
as a set of passive generators for the active generators Sio. Moreover, we have 

0 = (-CZ) I- (1 I- (-53)) 

so we do not need to include 0 as a passive generator. 

Proposition 5.3. ~ P , , ( Z [ < ] )  = Sro. 

6. Quasicrystal monoids 

Up to now we have not paid much attention to the operators Tx that arise in quasicyrstal 
addition. In this section we study the algebraic structure of the monoid generated by these 
operators. As before, we begin with an R-module L and subsets S, X c L .  From these we 
derive the set of points (S; X)'. This set is by definition generated from the passive set X 
by the repeated action of operators T,, s E S. We denote by 5 the h n o i d  of all operators 
on LF generated by the elements T,, s are affine-linear maps, 
the restriction of the operators of 5 to operators L + L is faithful and we will be free 
to think of 7 s  as operators on L or L p .  We call these monoids, monoids of quasicrystal 
operators. 

If (st, .  . . , $1) is a sequence in S then we have the word 6 = (Ts,, . . . , T,,) and its 
corresponding value w = T x k , .  .. , T,, E 5. 

Let L be a free R-module with basis B and let % be the corresponding monoid. If 
K is any R-module and S any subset of K with card(S) = cardB then there is a natural 
R-module map @ : L + K induced from any bijection of B to S, and then an induced 
monoid homomorphism 4 : % with 4Th =~T$(b) ,  for all B .  We see then that 7 B  

is a free monoid of quasicrystal operators and depends only on the cardinality 01 of B .  We 
will usually denote 7 s  by FB or 3,. 

S. Since the elements of 

Because of proposition Z.l(iii), if 01 > 1 then there are relations in FE: 

TxT; = T,T: for all x ,  y E B.  (QW) 
The main result of this section is that Fs is completely described by (QCM). 
It is interesting to begin with a q-version of a quasicrystal. For this purpose we let Z[q] 

be the polynomial algebra in the indeterminate q and form the free Z[q]-module 

Z [~I .  = $z [qIx j  
jsu 
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where ( x j ]  is some basis indexed by the cardinal a. 
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We define kq on Z[q] by 

x I-, y = qzx - q y  

and hence operators fX, x E Z[q]., analagous to the operators T,. In particular we may 
form the monoid ;F,(q) generated by the operators T, := Tx,, i E cf. We are interested, of 
course, in the case that when q is specialized to r ,  but it is interesting to note the cases 
when q is specialized to &I which are directly related to lattices. 

Propostion 6.1. Fa(q) is the free monoid on the generators f i ,  i E a. 

Proof. 

(6.2) 4 k ? L I  . . . ?. Ik U = q2xi, - q3xiZ + q xi, - . . . + (-qjp+'xi, + (-9) U 

from which it is obvious that 

- 
T . . . T .  - T .  . . .  T .  # k = l a n d i  - '  - j p  for all p ,  0 lii - I ,  l i  

0 

Proposition 6.3. Let L be the free R-module with basis B .  Suppose that 
( x .  y ,  z, . . .) and (U, U ,  w, . . .) are finite sequences of elements of B and suppose that 

Tz TyTz . . , = T,T,T,. ' . (6.4) 

Then: 
(i) the lengths of the words on the left- and right-hand sides are equal; 
(ii) using only the relations (QCM) the left-hand side can be transformed by repeated 

substitutions into the right-hand side. 

Proof. We use induction on the length of the left-hand side of (6.4). Since the operators 
Tp are invertible as transformations on L.r, we can cancel equal terms off the left ends of 
our words whenever they appear. Note that this cancellation is used only as a matter of 
convenience in the argument. 

Using equation (6.2) and replacing q by r we obtain 

2 x + ( -r)y  + (-r)'z +. .  . = I I  + ( - r ) ~  + (-r) w +.'. 
Applying the automorphism of R and setting p = -7' = r-' E (0, I) we have 

x + py + $Z+. . . = U  + pu + ! 2 w  +.  . .. (6.5) 

We observe that 
m 

(6.6) 
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It is already immediate from equation (6.5) that if one side of (6.4) is empty then so i s  the 
other. We assume then that neither side is empty. Furthermore, if x = U we can drop the 
terms TL and Tu and reduce the length. Henceforth we assume that x # U .  Then in view 
of (6.6) and the R-independence of the elements of B ,  we have from (6.5) that 
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v = x  

and similarly 

y = u # x  

so (6.5) becomes 

x + p y  + $ z + .  . . = Y +px + p 2 w  + . . . . (6.7) 

This already excludes the possibility that either the left- or right-hand sides have length less 
than 3. 

If the left-hand side has length 3 then from (6.6) we see that z = y and 

2 x = p x + p  w+... 

from which w = x and the right-hand side also has length 3. Thus our original equation 
reads 

TxTyTy = TyTxTx 

which is part of (QCM). Similar considerations dispose of the case that the right-hand side 
has length 3. 

We now suppose that both sides have length greater than 3 and write (6.5) as 

x + p y  + pzz + W 3 Z ,  + ' '. = y + px + p2w +p3w, + ' ' .  . (6.8) 

On the left-hand side we still need to make up (1 - p ) y  = /*'y. Since x j a 4 p j  = p2 we 
need at least one of z or z1 to be y .  Similarly one of w or W I  i s  equal to x .  

Case I ( z  = y ) .  In this case our relation reads 

T,T,T,T,;. .=T,T~T, ... 

and so by (QCM) we get 

T y x x z ,  T T T , .. = TiTiT, .. . . 

Cancelling reduces the length and we are done by induction 

Case 2 (w = x ) .  Th is  is similar to case 1 



The algebriac theory of quasicryslals 129 

Case 3 ( z  # y, w # x ) .  We have 
2 3 x + p y  +p2z + p3y +.  . . = Y + px + p 10 + p  x + .... 

If z = x then p + p3 + . . , c p + zZ3 pi = Zp must exceed 1 + p2, which is false. Thus 
z # x ,  and similarly w # y. Now we claim that w = z, for if not then Cz4pLi = p2 must 
exceed p2, which is false. Thus 

(6.9) 

To complete the content of y on the left-hand side of (6.9) we need p + p3 + . . . = 1 

Thus we either have a term p4y or p5y If there is no p4 term then we have 

x + p y  + p=z + p3y + " ' = y + px + pzz + p3x + ' " . 

and so p3 + .  . . = p2. 

3 5  p + *  + . . . = * 2  

and so we have either p6 so p3+ps+p6 = p3+p4 = p 2 ,  or 1'. (Otherwise, CF8 pi = p6 
shows that we cannot arrive at p2.) Repeating this argument we see that, due to finiteness 
of the left-hand side, we have to have a solution 

p3 + p5 + . ,  . + pZk-' + pa = p2 for some k .  

Thus the left-hand side of (6.4) is 

T, T, Tz Ty T,, T, T,, Ty . . . T, T, Ty Tim+, . . . . 
From (QCM) we have TbTyTy = TyTzn,Tzm, and this initiates a chain of reductions 

resulting in 

T~T,T,T:T; . . . T:~T;+, . 
Finally, after one more replacement, we have transformed the left-hand side to T,T:T:, , . 
and we can cancel terms from the left- and right-hand sides thereby reducing the length.0 

Corollary 6.10. FE is isomsorphic to the free monoid M with generators 1,. x E E ,  and 
relation 

txz: = tyt: for all x ,  y E E .  

In particular 3 8  is embeddable i n  a group 

Proof. 
Suppose that f (tr, . . . t x k )  = f (t,, . , . t , ,),  where X I ,  . . . , xk.  YI . . . , y~ E E .  Then 

Let f : M -+ FE be the unique monoid homomorphism with f ( t x )  = Tx. 

T,, . . . T,, = T>, . . . Tyd 

and by using the relation T,T,? = T,T: we may rewrite the left-hand side as the right-hand 
U side. The same replacements in the t ' s  show that tx, . . . txk = t,., . . . t,, 
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