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...And I saw the sacred hoop of my people was one of the many hoops that made one circle,
wide as daylight and as starlight, and in the center grew one mighty flowering iree to shelter all
the children of one mother and one father.

—Black Elk, Oglala Sioux

Abstract. An algebraic binary operation is introduced into quasicrystals admitting five-fold
symmetry. In terms of this many quasicrystals displaying full pentagonal or icosahedral
symmetry are seen to be finitely generated, Examples are given in dimensions 1, 2, 3 and
4. The operation of left quasicrystal addition is affine-linear. The monoid generated by these
operators is discussed and a presentation for it given in the generic case.

1. Introduction

In this paper we wish to point out that a great variety of quasicrystals admitting five-
fold symmetries are closed under an algebraic binary operation that we call quasicrystal
addition. In terms of this operation many infinite quasicrystals displaying full pentagonal
or icosahedral symmetry can be finitely generated.

For the purposes of this paper we mean by quasicrystals certain point sets in real n-space
R*. Initially the concept is used loosely, since no generally accepted definition of the word
exists. Our main requirement is that our sets T possess the Delaunay property: there exists
positive constants r; and rs such that

for all x € £ the ball B,(ry) of radius r, about x meets T
onlyinx :ZNB,(r)={x}).foralxe X (1.1)

forall x e R™, ZN By(ry) # 4. (1.2)

We let t := (1 + «/g)/l, F o= Qfr], and let ' : F — F be the automorphism
determined by +/3 —> —+/3. The subring R := Zfr] = {a + bt | a,b € Z} of F is the
ring of integers of F. We recall that

P=1 41 T+t =1, (1.3)
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An R-lattice in R* is an R-submodule L of R" of rank n that spans R". Al of our
quasicrystals will consist of subsets of points from R-lattices. Quasicrystal addition, i, is
defined by

xFy=tix -1y
‘What makes this relevant to quasicryst@ls is the close relationship to expressions of the form
% — 'y

which are in fact convex combinati0n$ of x and y. We define quasilattices to be Delaunay
subsets of R-lattices that are closed under . We provide a number of examples of such
sets in dimensions 1, 2, 3 and 4 which show the ubiquity of such sets.

The affive-linear operators 7; : y = (x I y) are particularly interesting. We view
the monoid of these operators as a generahzatmn to the quasicrystal setting of the group of
translations of a lattice. The underlymg identity that relates these operators is

T.5T, = LT,

which we think of as a replacement for commutativity. In section 6 we prove that if B is a
base for the R-lattice L then these identities completely describe the monoid 73 generated
by the T}, x € B. ‘

In section 3 we establish a simple geometric condition that can be used to show that
certain quasicrystals defined by acceptance domains are generated by finite sets of elements.
In section 4 we examine the one-dimensional cases in detail.

The illustrations accompanying the text were generated by the software package simpLie
[4]. ) )

2. Quasicrystal addition |

Let L be a free R-module and let L g ‘— F ® L. In the case that L is an R-lattice, Ly will
be considered simply as the F-span of L in R",
We define quasicrystal addition on Lg by

|
|
for all x, y € L. For each x € Lr we then have the operator

xby:=1%—1y

T.:Lp— Lr

1
yH(xFy):rszry.
|

Observe that T, is an affine-linear mapping of Lr. Quasicrystal addition is neither
associative nor commutative. However we have:
Proposition 2.1. For all X, ) wel F
DT, (x)=xkx=
(iDxF@xFy=y I—x
(iii) T, Tf =T, sz;
W)+ FO+uy=0xFy+u
|
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FProgf. These are all trivial to verify. For (iii) we note that by using ¢1.3)
TxTyzz =7%x — {2y — t(rzy 74}
=72+ (1t — )y -2
=t (x+y)-12
which is symmetric in x and y. O

The important property of proposition 2.1(iv) is called transiation invariance.
A subset B of Lr is closed under - if x + y € B, for all x, ¥y € B. For non-empty
subsets A, B C Lr we define

(A; BY :={T,, ... T, (®) :a1,...ar € A, b€ B,k >0}

where it is understood that we are taking the elements of B when £ = 0. We call A the set
of active generators and B the set of passive generators in (4; B)". We define

AP = (A; A

We say that A replicates a set B or B is replicated by A if

) T(BYCB,forallacA,

(if) Uyen T2(B) = B.

Figure 1 illustrates the growth of a set (A; A)" where A is the set of vertices of a
regular pentagon. Beginning with A we see successively A - A, A F (A I A), and
AF(AF (A A).

In order to understand how quasicrystal addition can be introduced naturally into the
study of quasicrystals, it is necessary to formulate the cut and project method in terms of
semilinear maps on L.

It is simplest to begin with the case L = R and the automorphism ' : R — R. Since

R=Z+Z1~ZxZCRxR

R may be viewed either as a one-dimensional R-module or a two-dimensional Z-module.
In terms of the standard dot product on R? , the two vectors

e(l, 7),¢'(d, ) where ¢ := (1 + £2)~1/2
form an orthonormal basis and we have the projection maps

{a,b) —> cla+ th)
(@, b} — c'(a + T'h).

From our point of view, the scaling factors ¢ and ¢’ are irrelevant and we prefer to use
7, i {a, b)) — (a+tb)
and

m (@, b)— (a+ 'h).



118 S Berman and R V Moody

Fignre 1. Thesets A, A A, AR (A A), and AF (A (A = A)) illustrating the growth of
(A; A) where A is the set of vertices of a pentagon,

Thus the composite maps
ReZxZCRxR— R
where the last map is either 7, or &, are
at+br— a+br
and
a+br— a+bt’' =(a+bt)

respectively. Thus m, consists of viewing R as a subset of R and & is then simply the
automorphism ’.

The essence of the cut and project method is to select a suitable point-set T in L (= R
in this case) by imposing a bounded set with non-empty interior as the target space of .
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Example 2.2, Let P be an interval (= convex subset) of B. We define
Erp=Zp(R)={xe R:x' ¢ P.
We claim that Zp is closed under . In fact, for x, y € Tp,

2.7 -1,

(t2x —ty) = () -ty =17 + ¢~y

Since 0 < 772, 77! < land t72+ 7! = 1, we have (t2x — ty)’ € P by the convexity of
P.

Observe also that tEZp C Xp provided that P C P. If P is a finite interval with
non-empty interior then p is 2 Delaunay set (See proposition 2.2 below).

To generalize this example we introduce the following algebraic structure:
Definition 2.3.  An (R,*)-module is a pair £ = (L,*) consisting of an R-lattice
L=} Re CR
together with a mapping
*:L—R"
satisfying

(X+y)*=x*+y*
(rx)* =r'x* forallx,yeL,reR
L* spans R*.

Such a mapping is necessarily injective.
A particularly important instance of this is the pair
R=(R/).

In many cases we have L* C L, but there are important cases (see the icosian ring
below) in which this does not happen. Nor need * be an operator of order 2, although this
is often the case. We will assume in the following that R" is equipped with a Euclidean
norm || ||

An easy way to construct a semilinear mapping * on L is to define it by

i:ajej — Zn:a}ej.
=1 =
We will continue to view Lz (and L and L) as subsets of R".
Example 2.4. Let P be any subset of R". We define
Ep=3p(L)i={xel: :x*cP)

Precisely the same type of argument that we used in example 2.1 shows that if P is convex
then Zp is closed under . We call P the acceptance domain of the set Zp.
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The constuction of £p in example 2.4 can be interpreted as a form of the cut and
project method, as we pointed out in the special case of example 2.2, Thus a large number
of quasicrystals that appear in the literature can be accommodated by example 2.4.

Lemma 2.5. Let £ =(L,”) be an (R,*)-module. Then:
(i) L and L* are dense subsets of R”";
(1) for any r,ry >0,

feeLilxll <, (x*] < ra}
is finite. Furthermore, for small enough r| this set is reduced to {0}.

Proof. (i) follows from the fact that R i is dense in R. For (ii) we observe that for x = Zc;e;,
¢; € R, the conditions §x}} < r; and |]x Il < ry simultaneousily bound ¢; and CJ for each
j. But the number of elements a -+ bt with a,b ¢ Z satisfying |a + br| < M, and
la + b7'| < Ma is finite for all My, Ma > 0. Furthermore, if M, is small enough the only
solution to these inequalities is a = b = 0. [

Definition 2.6.  An guasilattice is a subset A of an R-lattice in R" satisfying:
(1) A is closed under F;
(it) A is a Delaunay set in R",
The R-module K generated by A in L is called the ambient space of A.

Proposition 2.7. Let £ be an (R.* )-modu[e in R*® and let P C R* be a bounded convex
subset with non-empty interior. Then Zp(L} is a quasilattice.

Proof. Ep(L) is closed under - by (2.4). Let 5 > 0. There exists r; = ri{s) > 0 such
that r; — 0 as 5 -» 0 and such that

II Za,-e,-[l <s=lagj|<n for all IR
There exists r, such that
Y ae €2P = a;|<r for all j.

Let x,y € Bp(L). Write x —y = Y aje;, a; € R. Suppose that Jx — yi| < s. Then
foral j=1,...,n

la; |<n and | a; |< ra.

Using lemma 2.5 we obtain (1.1) for Zp(L).

Since L* is dense and P has a non-empty interior, there exist vy,..., v, € Ep(ﬁ)
that span R". Using proposition 4.4, Wthh we will prove below, we see that {0, v,} is a
Delaunay set. Thus there is an 7, > 0 such that any interval of length at least r in ]RvJ
contains a point of {0, vj} Using this for all j =1,...,n we obtain (1.2} for Tp(L).
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Example 2.8. Inside the real quaternions
H=RI+Ri+Rj+Rk

we consider the subring Hp = F1 4+ Fi + Fj + Fk. we define * on Hy as the (F,)-
semilinear mapping that is uniquely specified by * = {, [ € {1,i, j, k}. The 120 unit
quaternions

(+1,0,0,0) and all permutations
$(£1, £1, 1, £1)

%(0, +1,+¢, 1) and all even permutations

called icosians form a finite group / isomorphic to the binary icosahedral group. The Z-
span of I is a ring I called the icosian ring. The icosian ring is one of the (all conjugate)
maximal orders of Hly, The pair T = (L,*) is an (R,*) module.

If P is any bounded convex subset of H with non-empty interior we may form the
quasilattice £p(Z) = {x e I | x* € P}. (See [3,5]) for more details when P is an open
ball.)

There are any number of quasilattices that we may form here that possess remarkable
symmetry but about which we know virtually nothing. For instance, the set 7 forms the
vertices of the four-dimensional polytope {3, 3, 5} [2]. The quasilattice 3(32,5(Z) contains
the quasilattices I™ and {/; J U {0}}". How do they compare?

Similarly the set Il := IN(Ri +Rj+Rk) gives rise to three-dimensional quasilattices. If
S is a set of vertices with icosahedral symmetry then S~ and {S; SuU {0}}" are quasilattices
with icosahedral symmeiry. In general we know lietle about these. In the case that the
vertices are the 30 (resp. 120) points of the root system of type Hj (resp. Hi) we have a
result analogous to the claims of propositions 5.1 and 5.3 [1].

Proposition 2.9.  Let A be a quasilattice in the R-lattice L. Then the F-span of A is Lp
and the ambient space is an R-lattice in L.

Proof. Since A is a Delaunay set, it cannot lie in a proper subspace of R*. Thus A contains
a basis of B”® and hence also of Ly. It follows that the ambient space is a submodule of
rank . O

Definition 2.10. Let Ay, A, be quasilattices with ambient spaces L; and La respectively.
An affine mapping of L, into Ly is a mapping ¢ : Ly — L, for which there is an R-madule
map d¢ : Ly — L, such that

¢lx 4+ v) = ¢(x) + 3p(v)

forall x,ve L.

A homomorphism of A into A is a mapping ¢ : Ly — L satisfying:

(i) ¢ is an afine map;

(i) ¢{A1) C As.

If Ly = L, then it is an endomorphism. It is an isomorphism if ¢ is bijective and
P{A1) = Az, We write A 2 As.
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Let ¢ be a homomorphism from A into Ay, Let ¢(0) =a € L;. Then
¢x) =p0+ x) =a+ d¢{x) forall x € L.
Then for all x, y € Ay,
(T, () = d(x Fy) =9 (x%x — 1)
=a+3¢(t’x —1y)
=a + 234 (x) — Td4(y)
=¢(x) - () = T (@),

Example 2.11. If A is a quasiiattice in L then:
(DA A+v forallvel;
(2) for all x in A, T is an endomorphism of A,

Remark 2.12.  If a quasilattice A is closed under central symmetry (A = —A) then we can
define another binary operation

(. y)— x + 1y
on A and obtain a new set of operators
Sy yr+— tix + Ty,

It is intuvitively suggestive to think of these S,’s as quasicrystal variants (when 7'="1) of
the operators

Lityr—x+y

that define the fundamental symmetries of lattices. Form this viewpoint, the monoid M
generated by the operators S,, x € A becomes the natural analogue of the group of
translations of a lattice. The basic identity

518, =835,  forallx,yeA
then becomes the quasilattice analogue of the commutatitve law

LLy=LyL,.

3. Replication

In this section we give a simple geometric condition for replication.
Let £ = (L, %) be an (R, *) module in R* above. It is straightforward to verify:

Lemma 3.1, Let P, Q CR". Then:
() Zpp = (T Ep, for all k € Z;
(i) Zpopp = A+ Ep, forall A e L;
(11!) EP U EQ = EPUQ! ZP n EQ = Epr\g. 0
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Proposition 3.2.  Let P be a closed bounded convex subset of R" with non-empty interior.
Let § be a finite subset of L. Then S is replicating for Tp if and only if

TP = U(r“ls* + P). (RC)

SES

Proof. S replicates Xp

— EP=UTZ¢2P

SES

= Ip=[ % -15p)

&8
&= —7'8p =| J(~ts + Zp)
se8
= Zp = Beigorr = Typmiosn
5ES

using lemma 3.1 several times.

If § is replicating for Tp then P and (J{(z~'s* + P) are closed regions in R” that
determine the same set of points in L. We wish to show that they are equal. Suppose that
y € TP but y ¢ [ J(r™1s* 4 P). Then there is an open neighbourhood & of y in R" that
lies entirely outside of { J(z?s* + P). Since tP is convex and contains an open ball of
R", it is easily seen that N Nt P contains a non-empty open subset I7. Since L* is dense in
R*, L*NU # @. Any point x € L with x* € L* N U lies in Z.p but not in Z jir-t;eppy, 2
contradiction. Thus P C U(r'ls* 4 P). A similar argument gives the reverse inclusion.

a

Proposition 3.3. Let P be a closed bounded convex region in R”. Suppose that § is a
finite subset of R” such that the replicating condition {RC) holds for § and P. Let

X:={xeZp|lx] <°u}
where p := max{|s| | s € §}. Then X is finite and Ep = (S; X)".

Proof. The set X is finite by lemma 2.5. By proposition 3.2, Ep = |55 F Zp. Let
x € Xp be fixed and suppose that |x[] > 3. We can now write x =5 y=T(y). We
have

x=1%—Ty=>Ty=T%5—1x

= 7yl < 22llsl + lx]
= Iyl <z +27Mxl < @72+ e 7Dx = Ix)l.
In this way we replace x by an element of smaller norm. Since by lemma 2.5 {z € Zp |

lz]l < llxli} is finite for each M 2 O, after a finite number of repetitions of this argument
we obtain a point z € X and a sequence s5y,..., 5, of elements of S with x =T, ... T}, (2).

(W
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4. One-dimensional quasilattices

Consider the (R*)-module R. Let a € R and define
%(a) = L, (R) = {x € R | x" € [0,a]}
where [0, 2] is the closed interval with end points 0 and a. Since
7[0,a] = [0, a] U (r"'a + [0, al)
we see that (RC) holds with § = {0, a’} and by proposition 3.3
B(a) = ({0,a'}; X)F
with
X ={xe X | Izl < *lah).
If @ = 0then £ = {0}. The most important case is @ = . Then a short calculation shows
that X = {0, 1, —7, 7%, —13). Since
—r=T() =TN-1) =)
we have:

PT‘OPOSiﬁOﬂ 4.1. E[DJ](R) = {0, 1}|_.
We have the following explicit description of Zg,11(R).

Proposition 4.2.

@) Zp,np(R) = {1}V {[bt~1] + bt : b € Z}, where [] is the roof function ([c] is the
least integer not less than ¢);

(i) ({0, 1} : (ODF = ([br="1 + b : b € Z}.
In particular, o 1)(R) and ({0, 1} : {0})" are Delaunay sets.

Proof. x e Tpn(R) == x=a+o1,0£a+bt’' €1, a beZ Wit the exception
b=0,a=0,1, we have

0€a+bt' €l e=0<a+br' <1
= g>-bt'>a—1

e (bt =a.
This proves (i). Now we observe that 1 -1 =1and 0k 1 = —-v =1+ (1 - 0). Thus
in (i) we need the number 1 in the passive set only to generate 1 iiself. Furthermore, if
1 is omitted from the passive set then it can no longer be generated. This follows from
inequalities [ik - b|| > ||b|| for k = 0, 1 provided that ||b}j > t* and inspection of the first
few values of generated in ({0, 1} : {Oh)". O

Notation 4.3. Let L be an R module. Let u,w € L, v ¥ w. Then T,, = {v,w}",
%, = {0,v)". In partticular, £, C R is defined to be {0,1}". By proposition 4.1,
21 = Epn(R).

Proposition 4.4. Let L be an R-module and let v,w € L, v # w. Then L, , >~ L. In
particular X, ,, is a Delaunay set.

Progf. Consider the mapping ¢ : R — L defined by ¢(r) = v + r(w — v). This maps
{0, 1}" bijectively onto {x#, w}". O

Thus in any quasilattice, the subset generated by any two distinct elements under - is
a copy of Iy,
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5. 'The cyclotomic integers Z[e*™/5)

Let ¢ := e*"/5 and consider the cyclotomic field Q[¢] and its ring of integers Z[] =
Z}f:o Zti ¢ C =~ R2. We have dimg Q[¢] = rankzZ[¢] = 4, the basic relation among the
powers of ¢ being

0=1+¢+2+27+¢%
The Galois group G = Gal{Q[z1/Q) =~ (Z/5Z)* is cyclic of order 4 with generator defined
by & —> &2, Since v = —(2%2 4+ ¢%) and v/ = —(¢ + £*) we see that

QIZINE = Qfr] ZIEINR=2Z[r] =R

and * induces the automorphism ’ on Z[r]. Thus the pair Z[Z] = (Z[{],*) is an (R,*)-
module of rank 2 in a natural way.

We let Ps be the (solid) pentagon with vertices Ss := {1, ¢,£2,£%,¢%). Then §¥ = S;
and geometrically it is easy to se¢ that TPs = | J,.g 775" + Ps.

. .
. N .
. « . » »
. . . o . .
¢« o . be o ¢ o
c* al 2 3
I . ————
* » o 'd 340 5. 5.
. . - 7e 8e
. . * 10°
., . .011
¢ o @ 12

Figure 2. Quasilattices Zp, (Z[¢]) and Ep, {Z[]). The points lfabelled 1 through 10 are
generated by the operators Ty, ..., T, acting on [0, a. b, ¢, d, ¢} (see the table above proposition
5.1). The points of Xp,(Z{¢]) shown here (complete out to radins 7} are also obtained after
two iterations of the operators 73, & € Sip, on the set Sip.

Thus Zp(Z[5]) = (Ss; X)7, where X = {x € Zp, | [x] < ). Figure 2 illustrates
the entire set of points of Ep with |x| < t% It is straightforward to see that in fact we
need only the points S5 U {0} as passive generators. The following table shows the requisite
calculations for the points indicated by the numbers 1 through 12.

() T.TXHO0)=rta () T.(0)=rt%a

(3} T,T.(0)=1a @ THO) =-1c
(5) T.(xd) =TL.LTX(0) = I[T(0) ©®) Talo)

D Tulb) = -t ® LTHO

©) TT20) (10) T.TX0) = —%¢

(1D T;TXHO) (12) Te(e).
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Proposition 5.1.  The set of points x of Z[{] such that x* lies in the closed pentagon with
vertices § = {1, ¢, &3, &4, &5} is generated by the action of T1, ..., Ty« on the set S5 U {0).

Remark 5.2. The quasilattice S5 consists of all points of ¥, (Z[£]) of the form Y a;¢/,
where ¥ a; = 1(mod 5).

A word about terminclogy: mathematical crystals are not lattices, but have the
underlying symmetry of lattices. For this reason we have called our algebraic objects
quasilattices rather than quasicrystals. The points of Penrose tilings have a right to be
called the prototypes of all algebraic quasicrystals; they have an underlying symmetry of
quasilattices.

Next consider the decagon Py = Ps U —Ps with vertices Sig = 85 U —85. The set of
points of Tp (Z[Z]) with [x| < 7° is 1llustrated in figure 2. In this case Sjp U {0} suffices
as a set of passive generators for the active generators Syo. Moreover, we have

0= (- F k()
so we do not need to include @ as a passive generator.

Proposition 5.3.  Tpy(Z[L]) = S,

6. Quasicrystal monoids

Up to now we have not paid much attention to the operators T, that arise in quasicyrstal
addition. In this section we study the algebraic structure of the monoid generated by these
operators. As before, we begin with an R-module L and subsets S, X < L. From these we
derive the set of points (S; X)". This set is by definition generated from the passive set X
by the repeated action of operators Ty, s € §. We denote by 7; the monoid of all operators
on L generated by the elements Ty, s 'e S, Since the elements of 75 are affine-linear maps,
the restriction of the operators of 7g to operators L — L is faithful and we will be free
to think of 75 as operators on L or Lp We call these monoids, monoids of quasicrystal

operators. o
If (s¢....,s1) is a sequence in § then we have the word & = (T,,,..., Tj,) and its
comresponding value w =T, ..., Ty, € T;.

Let L be a free R-module with basis B and let 7z be the corresponding monoid. If
K is any R-module and § any subset of K with card{5) = cardB then there is a natural
R-module map ¢ : L — K induced from any bijection of B to 5, and then an induced
monoid homomorphism ¢ : Tz — T with 6T, =Ty, for all B. We see then that Tp
is a free monoid of quasicrystal operatc'Jrs and depends only on the cardinality o of B. We
will usually denote 73 by Fg or F.

Because of proposition 2.1(iii}, if & > 1 then there are relations in Fjp:

T, T}2 = T,T? for alt x,y € 8. (QCM)

The main result of this section is that Fz 1s completely described by (QCM).
It is interesting to begin with a g-version of a quasicrystal. For this purpose we let Z{q]
be the polynomial algebra in the indeterminate g and form the free Z{g]-module

q)e = P Zlglx;

fex



The algebriac theory of quasicrystals 127

where {x;} is some basis indexed by the cardinal «.
We define -, on Z[g] by

xb,y=qx—qy

and hence operators f‘x, x € Z[q)y, analagous to the operators T, In particular we may
form the monoid F,(g) generated by the operators T, 1= fx,, i € . We are interested, of
course, in the case that when ¢ is specialized to r, but it is interesting to note the cases
when g is specialized to £1 which are directly related to lattices.

Propostion 6.1.  F,(q) is the free monoid on the generators T.ica.

Prodf.

Tiy - Tt = @3 — @iy + g0, — - + (=g 2y, + (—)tu (6.2)
from which it is obvious that

-~

Ty Ty=T - Ty e=k=ladip=j, forallp.

O

Proposition 6.3, Let L be the free R-module with basis B. Suppose that
(x,¥,z,...0 and (1, v, w,...) are finite sequences of elements of B and suppose that

LT, -=T,0T,- . (6.4)

Then:

(i) the lengths of the words on the lefi- and right-hand sides are equal,

(i) using only the relations (QCM) the left-hand side can be transformed by repeated
substitutions into the right-hand side.

Proof. We use induction on the length of the left-hand side of (6.4). Since the operators
T, are invertible as transformations on Lr, we can cancel equal terms off the left ends of
our words whenever they appear. Note that this cancellation is used only as a matter of
convenience in the argument.

Using equation (6.2) and replacing ¢ by t we obtain

YDy +(—Pz+ = uF (=D + (—0) W+ .
Applying the automorphism of R and setting 4t = —7' =7~} € (0, 1) we have
x+uy+pirt o =utuv+plot-. (6.5)

‘We observe that

o0

Dowi=1  pt+ut=l (6.6)
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It is already immediate from equation (6.5} that if one side of (6.4) is empty then so is the
other. We assume then that neither side is empty. Furthermore, if ¥ = u we can drop the
terms T; and T, and reduce the length. Henceforth we assume that x 3£ «#. Then in view
of (6.6) and the R-independence of the elements of B, we have from (6.5) that

V=X
and similarly
y=u#x
50 (6.5) becomes
Xxhuy+utt o=y tux+ptwt 6.7

This already excludes the possibility that either the left- or right-hand sides have length less
than 3.
If the left-hand side has Jength 3 then from (6.6) we see that z = y and

x =px+pPwt -

fromm which w = x and the right-hand side also has length 3. Thus our original equation
reads

T, = LT

which is part of (QCM). Similar considerations dispose of the case that the right-hand side
has length 3.
We now suppose that both sides have length greater than 3 and write (6.5) as

xtpy+ptz+pln 4=y px+ ptu g+ (6.8)

On the left-hand side we still need to make up (I — )y = u?y. Since 3 in4 wf = u? we
need at least one of z or z; to be y. Similarly one of w or w; is equal to x.

Case I {(z=1y). In this case our relation reads
., - =TTTy...
and so by (QCM) we get
LG, =0LTLT,....
Cancelling reduces the length and we are done by induction.

Case 2 (w = x). This is similar to case 1.
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Case 3 (z # y,w # x). We have
x+py+ptz+uly+ oo sy Fux+ptwple 4+

Ifz=xthen p+pd+... <+ 2, ut =2p must exceed 1+ p?, which is false. Thus
z # x, and similarly w % y. Now we claim that w = z, for if not then } 2, u' = % must
exceed 2, which is false. Thus

x+py+ e+ @ly b=yt ptc+ a4 (6.9)
To complete the content of ¥ on the left-hand side of (6.9) we need w4+ p®+--- =1
and so 4 + .- =l

Thus we either have a term p*y or u®y If there is no u* term then we have
=2

and so we have either 18 50 g3+ p +u8 = p3+p* = p?, or p7. (Otherwise, Y52, pf = u®
shows that we cannot arrive at u2.) Repeating this argument we see that, due to finiteness
of the left-hand side, we have to have a solution

w e g =y for some k.
Thus the left-hand side of (6.4) is
TxT}’I}TyanyTzzTy T TZnT)’TJsz

ARIEI

From (QCM) we have T, T,T, = T,T, T, , and this initiates a chain of reductions
resulting in

2442 2
LT . TAT,

zm-}-l '

Finally, after one more replacement, we have transformed the left-hand side to TnyTf ‘e
and we can cancel terms from the left- and right-hand sides thereby reducing the length.OJ

Corollary 6.10. Fp is isomsorphic to the free monoid A with generators 1, x € B, and
relation

tely = 1,1} for all x, y € B.
In particular Fp is embeddable in a group.
Proof. Let f : M — Fp be the unigue monoid homomorphism with f(t;}) = T;.
Suppose that f(ty, ... ty) = f(ty, ... 1y,), where x;, ..., %, ¥1..., Y € B, Then

Tyoo D=1, ...7,

and by using the relation T Tf = T,T? we may rewrite the left-hand side as the right-hand
side. The same replacements in the #’s show that 7, .. .2, =1, .. .1y, O
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