The algebraic theory of quasicrystals with five-fold symmetries

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27115
(http://iopscience.iop.org/0305-4470/27/1/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:18

Please note that terms and conditions apply.

The algebriac theory of quasicrystals with five-fold symmetries*

S Berman \dagger and R V Moody $\ddagger \S$
\dagger University of Saskatchewan Saskatoon, Saskatchewan S7N 0W0, Canada
\ddagger Department of Mathematics, University of Alberta Edmonton, Alberta T6G 2G1, Canada

Received 23 June 1993
... And I saw the sacred hoop of my people was one of the many hoops that made one circle, wide as daylight and as starlight, and in the center grew one mighty fowering tree to shelter all the children of one mother and one father.
—Black Elk, Oglala Sioux

Abstract

An algebraic binary operation is introduced into quasicrystals admitting five-fold symmetry. In terms of this many quasicrystals displaying full pentagonal or icosahedral symmetry are seen to be finitely generated. Examples are given in dimensions 1,2,3 and 4. The operation of left quasicrystal addition is affine-linear. The monoid generated by these operators is discussed and a presentation for it given in the generic case.

1. Introduction

In this paper we wish to point out that a great variety of quasicrystals admitting fivefold symmetries are closed under an algebraic binary operation that we call quasicrystal addition. In terms of this operation many infinite quasicrystals displaying full pentagonal or icosahedral symmetry can be finitely generated.

For the purposes of this paper we mean by quasicrystals certain point sets in real n-space \mathbb{R}^{n}. Initially the concept is used loosely, since no generally accepted definition of the word exists. Our main requirement is that our sets Σ possess the Delaunay property: there exists positive constants r_{1} and r_{2} such that

$$
\begin{align*}
& \text { for all } x \in \Sigma \text { the ball } B_{x}\left(r_{1}\right) \text { of radius } r_{1} \text { about } x \text { meets } \Sigma \\
& \text { only in } x: \Sigma \cap B_{x}\left(r_{1}\right)=\{x\} \text {, for all } x \in \Sigma \tag{1.1}\\
& \text { for all } x \in \mathbb{R}^{m}, \Sigma \cap B_{x}\left(r_{2}\right) \neq \emptyset \tag{1.2}
\end{align*}
$$

We let $\tau:=(1+\sqrt{5}) / 2, F:=\mathbb{Q}[\tau]$, and let ' $: F \longrightarrow F$ be the automorphism determined by $\sqrt{5} \longmapsto-\sqrt{5}$. The subring $R:=\mathbb{Z}[\tau]=\{a+b \tau \mid a, b \in \mathbb{Z}\}$ of F is the ring of integers of F. We recall that

$$
\begin{equation*}
\tau^{2}=\tau+1 \quad \tau+\tau^{\prime}=1 \tag{1.3}
\end{equation*}
$$

[^0]An R-lattice in \mathbb{R}^{n} is an R-submodule L of \mathbb{R}^{n} of rank n that spans \mathbb{R}^{n}. All of our quasicrystals will consist of subsets of points from R-lattices. Quasicrystal addition, \vdash, is defined by

$$
x \vdash y=\tau^{2} x-\tau y
$$

What makes this relevant to quasicrystals is the close relationship to expressions of the form

$$
\tau^{\prime 2} x-\tau^{\prime} y
$$

which are in fact convex combinations of x and y. We define quasilattices to be Delaunay subsets of R-lattices that are closed under \vdash. We provide a number of examples of such sets in dimensions $1,2,3$ and 4 which show the ubiquity of such sets.

The affine-linear operators $T_{x}: y \longmapsto(x \vdash y)$ are particularly interesting. We view the monoid of these operators as a generalization to the quasicrystal setting of the group of translations of a lattice. The underlying identity that relates these operators is

$$
T_{x} T_{y} T_{y}=T_{y} T_{x} T_{x}
$$

which we think of as a replacement for commutativity. In section 6 we prove that if B is a base for the R-lattice L then these identities completely describe the monoid \mathcal{T}_{B} generated by the $T_{x}, x \in B$.

In section 3 we establish a simple geometric condition that can be used to show that certain quasicrystals defined by acceptance domains are generated by finite sets of elements. In section 4 we examine the one-dimensional cases in detail.

The illustrations accompanying the text were generated by the software package simpLie [4].

2. Quasicrystal addition

Let L be a free R-module and let $L_{F}:=F \otimes L$. In the case that L is an R-lattice, L_{F} will be considered simply as the F-span of L in \mathbb{R}^{n}.

We define quasicrystal addition on L_{F} by

$$
x \vdash y:=\tau^{2} x-\tau y
$$

for all $x, y \in L$. For each $x \in L_{F}$ we then have the operator

$$
\begin{aligned}
& T_{x}: L_{F} \rightarrow L_{F} \\
& y \longmapsto(x \vdash y)=\tau^{2} x-\tau y .
\end{aligned}
$$

Observe that T_{x} is an affine-linear mapping of L_{F}. Quasicrystal addition is neither associative nor commutative. However we have:

Proposition 2.1. For all $x, y, u \in L_{F}$:
(i) $T_{x}(x)=x \vdash x=x$;
(ii) $x \vdash(x \vdash y)=y \vdash x$;
(iii) $T_{x} T_{y}^{2}=T_{y} T_{x}^{2}$;
(iv) $(x+u) \vdash(y+u)=(x \vdash y)+u$.

Proof. These are all trivial to verify. For (iii) we note that by using (1.3)

$$
\begin{aligned}
T_{x} T_{y}^{2} z & =\tau^{2} x-\tau\left(\tau^{2} y-\tau\left(\tau^{2} y-\tau z\right)\right) \\
& =\tau^{2} x+\left(\tau^{4}-\tau^{3}\right) y-\tau^{3} z \\
& =\tau^{2}(x+y)-\tau^{3} z
\end{aligned}
$$

which is symmetric in x and y.
The important property of proposition 2.1(iv) is called translation invariance.
A subset B of L_{F} is closed under \vdash if $x \vdash y \in B$, for all $x, y \in B$. For non-empty subsets $A, B \subset L_{F}$ we define

$$
(A ; B)^{\vdash}:=\left\{T_{a_{k}} \ldots T_{a_{1}}(b): a_{1}, \ldots a_{k} \in A, b \in B, k \geqslant 0\right\}
$$

where it is understood that we are taking the elements of B when $k=0$. We call A the set of active generators and B the set of passive generators in $(A ; B)^{\vdash}$. We define

$$
A^{\vdash}=(A ; A)^{\vdash}
$$

We say that A replicates a set B or B is replicated by A if
(i) $T_{a}(B) \subset B$, for all $a \in A$,
(ii) $\bigcup_{a \in A} T_{a}(B)=B$.

Figure 1 illustrates the growth of a set $(A ; A)^{\vdash}$ where A is the set of vertices of a regular pentagon. Beginning with A we see successively $A \vdash A, A \vdash(A \vdash A)$, and $A \vdash(A \vdash(A \vdash A))$.

In order to understand how quasicrystal addition can be introduced naturally into the study of quasicrystals, it is necessary to formulate the cut and project method in terms of semilinear maps on L .

It is simplest to begin with the case $L=R$ and the automorphism ${ }^{\prime}: R \rightarrow R$. Since

$$
R=\mathbb{Z}+\mathbb{Z} \tau \simeq \mathbb{Z} \times \mathbb{Z} \subset \mathbb{R} \times \mathbb{R}
$$

R may be viewed either as a one-dimensional R-module or a two-dimensional \mathbb{Z}-module. In terms of the standard dot product on \mathbb{R}^{2}, the two vectors

$$
c(1, \tau), c^{\prime}\left(1, \tau^{\prime}\right) \quad \text { where } c:=\left(1+\tau^{2}\right)^{-1 / 2}
$$

form an orthonormal basis and we have the projection maps

$$
\begin{aligned}
& (a, b) \longmapsto c(a+\tau b) \\
& (a, b) \longmapsto c^{\prime}\left(a+\tau^{\prime} b\right)
\end{aligned}
$$

From our point of view, the scaling factors c and c^{\prime} are irrelevant and we prefer to use

$$
\pi_{1}:(a, b) \longmapsto(a+\tau b)
$$

and

$$
\pi_{\perp}:(a, b) \longmapsto\left(a+\tau^{\prime} b\right)
$$

Figure 1. The sets $A, A \vdash A, A \vdash(A \vdash A)$, and $A \vdash(A \vdash(A \vdash A))$ illustrating the growth of $(A ; A)$ where A is the set of vertices of a pentagon.

Thus the composite maps

$$
R \simeq \mathbb{Z} \times \mathbb{Z} \subset \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}
$$

where the last map is either π_{1} or π_{\perp}, are

$$
a+b \tau \longmapsto a+b \tau
$$

and

$$
a+b \tau \longmapsto a+b \tau^{\prime}=(a+b \tau)^{\prime}
$$

respectively. Thus π_{1} consists of viewing R as a subset of \mathbb{R} and π_{\perp} is then simply the automorphism '.

The essence of the cut and project method is to select a suitable point-set Σ in $L(=R$ in this case) by imposing a bounded set with non-empty interior as the target space of π_{\perp}.

Example 2.2. Let P be an interval (= convex subset) of \mathbb{R}. We define

$$
\Sigma_{P}=\Sigma_{P}(R)=\left\{x \in R: x^{\prime} \in P\right\}
$$

We claim that Σ_{P} is closed under \vdash. In fact, for $x, y \in \Sigma_{P}$,

$$
\left(\tau^{2} x-\tau y\right)^{\prime}=\left(\tau^{\prime}\right)^{2} x^{\prime}-\tau^{\prime} y^{\prime}=\tau^{-2} x^{\prime}+\tau^{-1} y^{\prime}
$$

Since $0<\tau^{-2}, \tau^{-1}<1$ and $\tau^{-2}+\tau^{-1}=1$, we have $\left(\tau^{2} x-\tau y\right)^{\prime} \in P$ by the convexity of P.

Observe also that $\tau \Sigma_{P} \subset \Sigma_{P}$ provided that $\tau^{\prime} P \subset P$. If P is a finite interval with non-empty interior then Σ_{P} is a Delaunay set (see proposition 2.2 below).

To generalize this example we introduce the following algebraic structure:
Definition 2.3. An ($R,{ }^{*}$) -module is a pair $\mathcal{L}=\left(L,{ }^{*}\right)$ consisting of an R-lattice

$$
L=\oplus_{j=1}^{n} R e_{j} \subset \mathbb{R}^{n}
$$

together with a mapping

$$
{ }^{*}: L \longrightarrow \mathbb{R}^{n}
$$

satisfying

$$
\begin{aligned}
& (x+y)^{*}=x^{*}+y^{*} \\
& (r x)^{*}=r^{\prime} x^{*} \quad \text { for all } x, y \in L, r \in R \\
& L^{*} \text { spans } \mathbb{R}^{n} .
\end{aligned}
$$

Such a mapping is necessarily injective.
A particularly important instance of this is the pair

$$
\mathcal{R}=\left(R,{ }^{\prime}\right)
$$

In many cases we have $L^{*} \subset \dot{L}$, but there are important cases (see the icosian ring below) in which this does not happen. Nor need * be an operator of order 2, although this is often the case. We will assume in the following that \mathbb{R}^{n} is equipped with a Euclidean norm \| \|.

An easy way to construct a semilinear mapping * on L is to define it by

$$
\sum_{j=1}^{n} a_{j} e_{j} \longmapsto \sum_{j=1}^{n} a_{j}^{\prime} e_{j}
$$

We will continue to view L_{F} (and L and L^{\prime}) as subsets of \mathbb{R}^{n}.
Example 2.4. Let P be any subset of \mathbb{R}^{n}. We define

$$
\Sigma_{P}=\Sigma_{P}(\mathcal{L}) ;=\left\{x \in L: x^{*} \in P\right\}
$$

Precisely the same type of argument that we used in example 2.1 shows that if P is convex then Σ_{P} is closed under \vdash. We call P the acceptance domain of the set Σ_{P}.

The constuction of Σ_{P} in example 2.4 can be interpreted as a form of the cut and project method, as we pointed out in the special case of example 2.2. Thus a large number of quasicrystals that appear in the literature can be accommodated by example 2.4 .

Lemma 2.5. Let $\mathcal{L}=\left(L,{ }^{*}\right)$ be an ($\left.R^{*},{ }^{*}\right)$-module. Then:
(i) L and L^{*} are dense subsets of \mathbb{R}^{n};
(ii) for any $r_{1}, r_{2}>0$,

$$
\left\{x \in L:\|x\|<r_{1},\left\|x^{*}\right\|<r_{2}\right\}
$$

is finite. Furthermore, for small enough r_{1} this set is reduced to $\{0\}$.

Proof. (i) follows from the fact that R is dense in \mathbb{R}. For (ii) we observe that for $x=\Sigma c_{j} e_{j}$, $c_{j} \in R$, the conditions $\|x\|<r_{1}$ and $'\left\|x^{\prime}\right\|<r_{2}$ simultaneously bound c_{j} and c_{j}^{\prime} for each j. But the number of elements $a+b \tau$ with $a, b \in \mathbb{Z}$ satisfying $|a+b \tau|<M_{1}$ and $\left|a+b \tau^{\prime}\right|<M_{2}$ is finite for all $M_{1}, M_{2}>0$. Furthermore, if M_{1} is small enough the only solution to these inequalities is $a=b=0$.

Definition 2.6. An quasilattice is a subset Λ of an R-lattice in \mathbb{R}^{n} satisfying:
(i) Λ is closed under \vdash;
(ii) Λ is a Delaunay set in \mathbb{R}^{n}.

The R-module K generated by Λ in L is called the ambient space of Λ.

Proposition 2.7. Let \mathcal{L} be an $\left(R,{ }^{*}\right)$-module in \mathbb{R}^{n} and let $P \subset \mathbb{R}^{\mu}$ be a bounded convex subset with non-empty interior. Then $\Sigma_{P}(\mathcal{L})$ is a quasilattice.

Proof. $\quad \Sigma_{P}(\mathcal{L})$ is closed under \vdash by (2.4). Let $s>0$. There exists $r_{1}=r_{1}(s)>0$ such that $r_{1} \rightarrow 0$ as $s \rightarrow 0$ and such that

$$
\left\|\sum a_{j} e_{j}\right\|<s \Rightarrow\left|a_{j}\right|<r_{1} \quad \text { for all } j
$$

There exists r_{2} such that

$$
\sum a_{j} e_{j}^{*} \in 2 P \Rightarrow\left|a_{j}\right|<r_{2} \quad \text { for all } j
$$

Let $x, y \in \Sigma_{P}(\mathcal{L})$. Write $x-y=\sum a_{j} e_{j}, a_{j} \in R$. Suppose that $\|x-y\|<s$. Then for all $j=1, \ldots, n$

$$
\left|a_{j}\right|<r_{1} \quad \text { and } \quad\left|a_{j}^{\prime}\right|<r_{2}
$$

Using lemma 2.5 we obtain (1.1) for $\Sigma_{P}(\mathcal{L})$.
Since L^{*} is dense and P has a non-empty interior, there exist $v_{1}, \ldots, v_{n} \in \Sigma_{P}(\mathcal{L})$ that span \mathbb{R}^{n}. Using proposition 4.4 , which we will prove below, we see that $\left\{0, v_{j}\right\}^{\vdash}$ is a Delaunay set. Thus there is an $r_{j}>0$ such that any interval of length at least r_{j} in $\mathbb{R} v_{j}$ contains a point of $\left\{0, v_{j}\right\}^{\dagger}$. Using this for all $j=1, \ldots, n$ we obtain (1.2) for $\Sigma_{P}(\mathcal{L})$.

Example 2.8. Inside the real quaternions

$$
\mathbb{H}=\mathbb{R} 1+\mathbb{R} i+\mathbb{R} j+\mathbb{R} k
$$

we consider the subring $\mathbb{H}_{F}=F 1+F i+F j+F k$. we define ${ }^{*}$ on \mathbb{H}_{F} as the $\left(F,{ }^{\prime}\right)$ semilinear mapping that is uniquely specified by $l^{*}=l, l \in\{1, i, j, k\}$. The 120 unit quaternions

$$
\begin{array}{ll}
(\pm 1,0,0,0) & \text { and all permutations } \\
\frac{1}{2}(\pm 1, \pm 1, \pm 1, \pm 1) & \\
\frac{1}{2}\left(0, \pm 1, \pm \tau^{\prime}, \pm \tau\right) & \text { and all even permutations }
\end{array}
$$

called icosians form a finite group I isomorphic to the binary icosahedral group. The \mathbb{Z} span of I is a ring I called the icosian ring. The icosian ring is one of the (all conjugate) maximal orders of \mathbb{H}_{F}. The pair $\mathcal{I}=\left(\mathbb{I},{ }^{*}\right)$ is an $\left(R,{ }^{*}\right)$ module.

If P is any bounded convex subset of \mathbb{H} with non-empty interior we may form the quasilattice $\Sigma_{P}(\mathcal{I})=\left\{x \in \mathbb{I} \mid x^{*} \in P\right\}$. (See [3,5] for more details when P is an open ball.)

There are any number of quasilattices that we may form here that possess remarkable symmetry but about which we know virtually nothing. For instance, the set I forms the vertices of the four-dimensional polytope $\{3,3,5\}$ [2]. The quasilattice $\Sigma_{\{3,3,5]}(\mathcal{I})$ contains the quasilattices I^{\vdash} and $\{I ; I \cup\{0\}\}^{\dagger}$. How do they compare?

Similarly the set $\mathbb{I}_{0}:=\mathbb{I} \cap(\mathbb{R} i+\mathbb{R} j+\mathbb{R} k)$ gives rise to three-dimensional quasilattices. If S is a set of vertices with icosahedral symmetry then S^{\vdash} and $\{S ; S \cup\{0\}\}^{\vdash}$ are quasilattices with icosahedral symmetry. In general we know little about these. In the case that the vertices are the 30 (resp. 120) points of the root system of type H_{3} (resp. H_{4}) we have a result analogous to the claims of propositions 5.1 and 5.3 [1].

Proposition 2.9. Let Λ be a quasilattice in the R-lattice L. Then the F-span of Λ is L_{F} and the ambient space is an R-lattice in L.

Proof. Since Λ is a Delaunay set, it cannot lie in a proper subspace of \mathbb{R}^{n}. Thus Λ contains a basis of \mathbb{R}^{n} and hence also of L_{F}. It follows that the ambient space is a submodule of rank n.

Definition 2.10. Let Λ_{1}, Λ_{2} be quasilattices with ambient spaces L_{1} and L_{2} respectively. An affine mapping of L_{1} into L_{2} is a mapping $\phi: L_{1} \longrightarrow L_{2}$ for which there is an R-module map $\partial \phi: L_{1} \longrightarrow L_{2}$ such that

$$
\phi(x+v)=\phi(x)+\partial \phi(v)
$$

for all $x, v \in L$.
A homomorphism of Λ_{1} into Λ_{2} is a mapping $\phi: L_{1} \longrightarrow L_{2}$ satisfying:
(i) ϕ is an afine map;
(ii) $\phi\left(\Lambda_{1}\right) \subset \Lambda_{2}$.

If $L_{1}=L_{2}$ then it is an endomorphism. It is an isomorphism if ϕ is bijective and $\phi\left(\Lambda_{1}\right)=\Lambda_{2}$. We write $\Lambda_{1} \simeq \Lambda_{2}$.

Let ϕ be a homomorphism from Λ_{1} into Λ_{2}. Let $\phi(0)=a \in L_{2}$. Then

$$
\phi(x)=\phi(0+x)=a+\partial \phi(x) \quad \text { for all } x \in L_{1} .
$$

Then for all $x, y \in \Lambda_{1}$,

$$
\begin{aligned}
\phi\left(T_{x}(y)\right) & =\phi(x \vdash y)=\phi\left(\tau^{2} x-\tau y\right) \\
& =a+\partial \phi\left(\tau^{2} x-\tau y\right) \\
& =a+\tau^{2} \partial \phi(x)-\tau \partial \phi(y) \\
& =\phi(x) \vdash \phi(y)=T_{\phi(x)}(\phi(y))
\end{aligned}
$$

Example 2.11 . If Λ is a quasilattice in L then:
(1) $\Lambda \simeq \Lambda+v$, for all $v \in L$;
(2) for all x in Λ, T_{x} is an endomorphism of Λ.

Remark 2.12. If a quasilattice Λ is closed under central symmetry $(\Lambda=-\Lambda)$ then we can define another binary operation

$$
(x, y) \longmapsto \tau^{2} x+\tau y
$$

on Λ and obtain a new set of operators

$$
S_{x}: y \longmapsto \tau^{2} x+\tau y
$$

It is intuitively suggestive to think of these S_{x} 's as quasicrystal variants (when $\tau^{\prime}=$ ' 1) of the operators

$$
L_{x}: y \longmapsto x+y
$$

that define the fundamental symmetries of lattices. Form this viewpoint, the monoid \mathcal{M} generated by the operators $S_{x}, x \in \Lambda$ becomes the natural analogue of the group of translations of a lattice. The basic identity

$$
S_{x}^{2} S_{y}=S_{y}^{2} S_{x} \quad \text { for all } x, y \in \Lambda
$$

then becomes the quasilattice analogue of the commutatitve law

$$
L_{x} L_{y}=L_{y} L_{x}
$$

3. Replication

In this section we give a simple geometric condition for replication.
Let $\mathcal{L}=(L, *)$ be an $(R, *)$ module in \mathbb{R}^{n} above. It is straightforward to verify:
Lemma 3.1. Let $P, Q \subset \mathbb{R}^{n}$. Then:
(i) $\Sigma_{\tau^{k} P}=\left(\tau^{\prime}\right)^{k} \Sigma_{P}$, for all $k \in \mathbb{Z}$;
(ii) $\Sigma_{\lambda^{*}+P}=\lambda+\Sigma_{P}$, for all $\lambda \in L$;
(iii) $\Sigma_{P} \cup \Sigma_{Q}=\Sigma_{P \cup Q}, \Sigma_{P} \cap \Sigma_{Q}=\Sigma_{P \cap Q}$.

Proposition 3.2. Let P be a closed bounded convex subset of \mathbb{R}^{n} with non-empty interior.
Let S be a finite subset of L. Then S is replicating for Σ_{P} if and only if

$$
\begin{equation*}
\tau P=\bigcup_{s \in S}\left(\tau^{-1} s^{*}+P\right) \tag{RC}
\end{equation*}
$$

Proof. S replicates Σ_{P}

$$
\begin{aligned}
& \Longleftrightarrow \Sigma_{P}=\bigcup_{s \in S} T_{s} \Sigma_{P} \\
& \Longleftrightarrow \Sigma_{P}=\bigcup_{s \in S}\left(\tau^{2} s-\tau \Sigma_{P}\right) \\
& \Longleftrightarrow-\tau^{-1} \Sigma_{P}=\bigcup_{s \in S}\left(-\tau s+\Sigma_{P}\right) \\
& \Longleftrightarrow \Sigma_{\tau} P=\bigcup_{s \in S} \Sigma_{\tau^{-1} s^{*}+P}=\Sigma_{\bigcup\left(\tau^{-i} s^{*}+P\right)}
\end{aligned}
$$

using lemma 3.1 several times.
If S is replicating for Σ_{P} then τP and $\bigcup\left(\tau^{-1} s^{*}+P\right)$ are closed regions in \mathbb{R}^{n} that determine the same set of points in L. We wish to show that they are equal. Suppose that $y \in \tau P$ but $y \notin \bigcup\left(\tau^{-1} s^{*}+P\right)$. Then there is an open neighbourhood N of y in \mathbb{R}^{n} that lies entirely outside of $\bigcup\left(\tau^{-1} s^{*}+P\right)$. Since τP is convex and contains an open ball of \mathbb{R}^{n}, it is easily seen that $N \cap \tau P$ contains a non-empty open subset U. Since L^{*} is dense in $\mathbb{R}^{n}, L^{*} \cap U \neq \emptyset$. Any point $x \in L$ with $x^{*} \in L^{*} \cap U$ lies in $\Sigma_{\tau} P$ but not in $\Sigma \cup\left(\tau^{-1} s^{*}+P\right)$, a contradiction. Thus $\tau P \subset \bigcup\left(\tau^{-1} s^{*}+P\right)$. A similar argument gives the reverse inclusion.

Proposition 3.3. Let P be a closed bounded convex region in \mathbb{R}^{n}. Suppose that S is a finite subset of \mathbb{R}^{n} such that the replicating condition (RC) holds for S and P. Let

$$
X:=\left\{x \in \Sigma_{P} \mid\|x\| \leqslant \tau^{3} \mu\right\}
$$

where $\mu:=\max \{\|s\| \mid s \in S\}$. Then X is finite and $\Sigma_{P}=(S ; X)^{\vdash}$.

Proof. The set X is finite by lemma 2.5. By proposition 3.2, $\Sigma_{P}=\bigcup_{s \in S} s \vdash \Sigma_{P}$. Let $x \in \Sigma_{P}$ be fixed and suppose that $\|x\|>\tau^{3} \mu$. We can now write $x=s \vdash y=T_{s}(y)$. We have

$$
\begin{aligned}
x=\tau^{2} s-\tau y & \Longrightarrow \tau y=\tau^{2} s-x \\
& \Longrightarrow \tau\|y\| \leqslant \tau^{2}\|s\|+\|x\| \\
& \Longrightarrow\|y\| \leqslant \tau \mu+\tau^{-1}\|x\|<\left(\tau^{-2}+\tau^{-1}\right)\|x=\| x \| .
\end{aligned}
$$

In this way we replace x by an element of smaller norm. Since by lemma $2.5\left\{z \in \Sigma_{P} \mid\right.$ $\|z\|<\|x\|\}$ is finite for each $M \geqslant 0$, after a finite number of repetitions of this argument we obtain a point $z \in X$ and a sequence s_{1}, \ldots, s_{k} of elements of S with $x=T_{s_{k}} \ldots T_{s_{1}}(z)$.

4. One-dimensional quasilattices

Consider the (R^{*})-module \mathcal{R}. Let $a \in R$ and define

$$
\Sigma(a)=\Sigma_{[0, a]}(\mathcal{R})=\left\{x \in R \mid x^{\prime} \in[0, a]\right\}
$$

where $[0, a]$ is the closed interval with end points 0 and a. Since

$$
\tau[0, a]=[0, a] \cup\left(\tau^{-1} a+[0, a]\right)
$$

we see that (RC) holds with $S=\left\{0, a^{\prime}\right\}$ and by proposition 3.3

$$
\Sigma(a)=\left(\left\{0, a^{\prime}\right\} ; X\right)^{\vdash}
$$

with

$$
X=\left\{x \in \Sigma(a) \mid\|x\| \leqslant \tau^{3}\|a\|\right\}
$$

If $a=0$ then $\Sigma=\{0\}$. The most important case is $a=1$. Then a short calculation shows that $X=\left\{0,1,-\tau, \tau^{2},-\tau^{3}\right\}$. Since

$$
-\tau=T_{0}(1) \quad \tau^{2}=T_{0}(-\tau) \quad-\tau^{3}=T_{0}\left(\tau^{2}\right)
$$

we have:
Proposition 4.1. $\quad \Sigma_{[0,1]}(R)=\{0,1\}^{\vdash}$.
We have the following explicit description of $\Sigma_{[0,1]}(R)$.

Proposition 4.2.

(i) $\Sigma_{[0,1]}(R)=\{1\} \cup\left\{\left\lceil b \tau^{-1}\right\rceil+b \tau: b \in \mathbb{Z}\right\}$, where \rceil is the roof function ($\lceil c\rceil$ is the least integer not less than c);
(ii) $(\{0,1\}:\{0\})^{-}=\left\{\left[b \tau^{-1}\right\rceil+b \tau: b \in \mathbb{Z}\right\}$.

In particular, $\Sigma_{\{0,1]}(R)$ and $(\{0,1\}:\{0\})^{\dagger}$ are Delaunay sets.
Proof. $x \in \Sigma_{[0,1]}(R) \Longleftrightarrow x=a+o \tau, 0 \leqslant a+b \tau^{\prime} \leqslant 1, a, b \in \mathbb{Z}$. With the exception $b=0, a=0,1$, we have

$$
\begin{aligned}
0 \leqslant a+b \tau^{\prime} \leqslant 1 & \Longleftrightarrow 0<a+b \tau^{\prime}<1 \\
& \Longleftrightarrow a>-b \tau^{\prime}>a-1 \\
& \Longleftrightarrow\left\lceil b \tau^{-1}\right\rceil=a
\end{aligned}
$$

This proves (i). Now we observe that $1 \vdash 1=1$ and $0 \vdash 1=-\tau=1 \vdash(1 \vdash 0)$. Thus in (i) we need the number 1 in the passive set only to generate 1 itself. Furthermore, if 1 is omitted from the passive set then it can no longer be generated. This follows from inequalities $\|k \vdash b\|>\|b\|$ for $k=0,1$ provided that $\|b\|>\tau^{3}$ and inspection of the first few values of generated in $(\{0,1\}:\{0\})^{\vdash}$.

Notation 4.3. Let L be an R module. Let $u, w \in L, v \neq w$. Then $\Sigma_{v, w}:=\{v, w\}$, $\Sigma_{v}:=\{0, v\}^{\vdash}$. In particular, $\Sigma_{1} \subset R$ is defined to be $\{0,1\}^{\dagger}$. By proposition 4.1, $\Sigma_{1}=\Sigma_{[0,1]}(R)$.

Proposition 4.4. Let L be an R-module and let $v, w \in L, v \neq w$. Then $\Sigma_{v, w} \simeq \Sigma_{1}$. In particular $\Sigma_{v, w}$ is a Delaunay set.

Proof. Consider the mapping $\phi: R \longrightarrow L$ defined by $\phi(r)=v+r(w-v)$. This maps $\{0,1\}^{\vdash}$ bijectively onto $\{u, w\}^{\vdash}$.

Thus in any quasilattice, the subset generated by any two distinct elements under \vdash is a copy of Σ_{1}.

5. The cyclotomic integers $\mathbb{Z}\left[\mathrm{e}^{\mathbf{2 \pi i} / 5}\right]$

Let $\zeta:=\mathrm{e}^{2 \pi i / 5}$ and consider the cyclotomic field $\mathbb{Q}[\zeta]$ and its ring of integers $\mathbb{Z}[\zeta]=$ $\sum_{j=0}^{4} \mathbb{Z} \zeta^{j} \subset \mathbb{C} \simeq \mathbb{R}^{2}$. We have $\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}[\zeta]=\operatorname{rank}_{\mathbb{Z}} \mathbb{Z}[\zeta]=4$, the basic relation among the powers of ζ being

$$
0=1+\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}
$$

The Galois group $G=\operatorname{GaI}(\mathbb{Q}[\zeta] / \mathbb{Q}) \simeq(\mathbb{Z} / 5 \mathbb{Z})^{\times}$is cyclic of order 4 with generator defined by $\zeta \longmapsto \zeta^{2}$. Since $\tau=-\left(\zeta^{2}+\zeta^{3}\right)$ and $\tau^{\prime}=-\left(\zeta+\zeta^{4}\right)$ we see that

$$
\mathbb{Q}[\zeta] \cap \mathbb{R}=\mathbb{Q}[\tau] \quad \mathbb{Z}[\zeta] \cap \mathbb{R}=\mathbb{Z}[\tau]=R
$$

and * induces the automorphism ${ }^{\prime}$ on $\mathbb{Z}[\tau]$. Thus the pair $\mathcal{Z}[\zeta]=\left(\mathbb{Z}[\zeta],{ }^{*}\right)$ is an ($R,{ }^{*}$)module of rank 2 in a natural way.

We let P_{5} be the (solid) pentagon with vertices $S_{5}:=\left\{1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}\right\}$. Then $S_{5}^{*}=S_{5}$ and geometrically it is easy to see that $\tau P_{5}=\bigcup_{s \in S} \tau^{-1} s^{*}+P_{5}$.

Figure 2. Quasilattices $\Sigma_{P_{5}}(\mathcal{Z}[\zeta])$ and $\Sigma_{P_{10}}(\mathcal{Z}[\zeta])$. The points labelled 1 through 10 are generated by the operators T_{a}, \ldots, T_{p} acting on $\{0, a, b, c, d, e\}$ (see the table above proposition 5.1). The points of $\Sigma_{P_{10}}(Z[\zeta])$ shown here (complete out to radius 7) are also obtained after two iterations of the operators $T_{k}, k \in S_{10}$, on the set S_{10}.

Thus $\Sigma_{P_{5}}(\mathcal{Z}[\zeta])=\left(S_{5} ; X\right)^{\vdash}$, where $X=\left\{x \in \Sigma_{P_{5}}| | x \mid \leqslant \tau^{3}\right\}$. Figure 2 illustrates the entire set of points of Σ_{P} with $|x| \leqslant \tau^{3}$. It is straightforward to see that in fact we need only the points $S_{5} \cup\{0\}$ as passive generators. The following table shows the requisite calculations for the points indicated by the numbers 1 through 12 .
(1) $T_{e} T_{b}^{2}(0)=\tau a$
(2) $T_{a}(0)=\tau^{2} a$
(3) $T_{b} T_{c}(0)=\tau^{3} a$
(4) $T_{c}^{2}(0)=-\tau c$
(5) $T_{e}(\tau d)=T_{e} T_{c} T_{e}^{2}(0)=T_{e}^{2} T_{c}^{2}(0)$
(6) $T_{a}(c)$
(7) $T_{a}(b)=-\tau^{2} c$
(8) $T_{b}^{3} T_{e}^{2}(0)$
(9) $T_{a}^{2} T_{c}^{2}(0)$
(10) $T_{a} T_{e}^{2}(0)=-\tau^{3} c$
(11) $T_{d}^{3} T_{a}^{2}(0)$
(12) $T_{e}(c)$.

Proposition 5.1. The set of points x of $\mathbb{Z}[\zeta]$ such that x^{*} lies in the closed pentagon with vertices $S=\left\{1, \zeta, \zeta^{3}, \zeta^{4}, \zeta^{5}\right\}$ is generated by the action of $T_{1}, \ldots, T_{\zeta^{4}}$ on the set $S_{5} \cup\{0\}$.

Remark 5.2. The quasilatice S_{5}^{\leftarrow} consists of all points of $\Sigma_{P_{s}}(\mathbb{Z}[\zeta])$ of the form $\sum a_{j} \zeta^{j}$, where $\sum a_{j} \equiv 1(\bmod 5)$.

A word about terminology: mathematical crystals are not lattices, but have the underlying symmetry of lattices. For this reason we have called our algebraic objects quasilattices rather than quasicrystals. The points of Penrose tilings have a right to be called the prototypes of all algebraic quasicrystals; they have an underlying symmetry of quasilattices.

Next consider the decagon $P_{10}=P_{5} \cup-P_{5}$ with vertices $S_{10}=S_{5} \cup-S_{5}$. The set of points of $\Sigma_{P_{10}}(\mathcal{Z}[\zeta])$ with $|x| \leqslant \tau^{3}$ is illustrated in figure 2 . In this case $S_{10} \cup\{0\}$ suffices as a set of passive generators for the active generators S_{10}. Moreover, we have

$$
0=\left(-\zeta^{2}\right) \vdash\left(1 \vdash\left(-\zeta^{3}\right)\right)
$$

so we do not need to include 0 as a passive generator.
Proposition 5.3. $\quad \Sigma_{P_{10}}(\mathcal{Z}[\zeta])=S_{10}^{\vdash}$.

6. Quasicrystal monoids

Up to now we have not paid much attention to the operators T_{x} that arise in quasicyrstal addition. In this section we study the algebraic structure of the monoid generated by these operators. As before, we begin with an R-module L and subsets $S, X \subset L$. From these we derive the set of points $(S ; X)^{\vdash}$. This set is by definition generated from the passive set X by the repeated action of operators $T_{s}, s \in S$. We denote by \mathcal{T}_{s} the monoid of all operators on L_{F} generated by the elements $T_{s}, s \in S$. Since the elements of T_{S} are affine-linear maps, the restriction of the operators of \mathcal{T}_{s} to operators $L \rightarrow L$ is faithful and we will be free to think of \mathcal{T}_{S} as operators on L or L_{F}. We call these monoids, monoids of quasicrystal operators.

If $\left(s_{k}, \ldots, s_{1}\right)$ is a sequence in S then we have the word $\tilde{w}=\left(T_{s_{k}}, \ldots, T_{s_{1}}\right)$ and its corresponding value $w=T_{s_{k}}, \ldots, T_{s_{1}} \in T_{s}$.

Let L be a free R-module with basis B and let \mathcal{T}_{B} be the corresponding monoid. If K is any R-module and S any subset of K with $\operatorname{card}(S)=\operatorname{card} B$ then there is a natural R-module map $\phi: L \longrightarrow K$ induced from any bijection of B to S, and then an induced monoid homomorphism $\tilde{\phi}: \mathcal{T}_{B} \longrightarrow \tau_{s}$ with $\tilde{\phi} T_{b}=T_{\phi(b)}$, for all B. We see then that τ_{B} is a free monoid of quasicrystal operators and depends only on the cardinality α of B. We will usually denote \mathcal{T}_{B} by \mathcal{F}_{B} or \mathcal{F}_{α}.

Because of proposition 2.1 (iii), if $\alpha>1$ then there are relations in $\mathcal{F}_{\boldsymbol{B}}$:

$$
\begin{equation*}
T_{x} T_{y}^{2}=T_{y} T_{x}^{2} \quad \text { for all } x, y \in B . \tag{QCM}
\end{equation*}
$$

The main result of this section is that \mathcal{F}_{B} is completely described by (QCM).
It is interesting to begin with a q-version of a quasicrystal. For this purpose we let $\mathbb{Z}[q]$ be the polynomial algebra in the indeterminate q and form the free $\mathbb{Z}[q]$-module

$$
\mathbb{Z}[q]_{\alpha}=\bigoplus_{j \in \alpha} \mathbb{Z}[q] x_{j}
$$

where $\left\{x_{j}\right\}$ is some basis indexed by the cardinal α.
We define \vdash_{q} on $\mathbb{Z}[q]$ by

$$
x \vdash_{q} y=q^{2} x-q y
$$

and hence operators $\hat{T}_{x}, x \in \mathbb{Z}[q]_{\alpha}$, analagous to the operators T_{x}. In particular we may form the monoid $\mathcal{F}_{\alpha}(q)$ generated by the operators $\hat{T}_{i}:=\hat{T}_{x_{i}}, i \in \alpha$. We are interested, of course, in the case that when q is specialized to τ, but it is interesting to note the cases when q is specialized to ± 1 which are directly related to lattices.

Propostion 6.1. $\mathcal{F}_{\alpha}(q)$ is the free monoid on the generators $\hat{T}_{i}, i \in \alpha$.

Proof.

$$
\begin{equation*}
\hat{T}_{i_{1}} \cdots \hat{T}_{i_{k}} u=q^{2} x_{i_{1}}-q^{3} x_{i_{2}}+q^{4} x_{i_{3}}-\cdots+(-q)^{k+1} x_{i_{k}}+(-q)^{k} u \tag{6.2}
\end{equation*}
$$

from which it is obvious that

$$
\hat{T}_{i_{1}} \cdots \hat{T}_{i_{k}}=\hat{T}_{j_{1}} \cdots \hat{T}_{j_{l}} \Longleftrightarrow k=l \text { and } i_{p}=j_{p} \quad \text { for all } p
$$

Proposition 6.3. Let L be the free R-module with basis B. Suppose that (x, y, z, \ldots) and (u, v, w, \ldots) are finite sequences of elements of B and suppose that

$$
\begin{equation*}
T_{x} T_{y} T_{z} \cdots=T_{u} T_{v} T_{w} \cdots \tag{6.4}
\end{equation*}
$$

Then:
(i) the lengths of the words on the left- and right-hand sides are equal;
(ii) using only the relations (QCM) the left-hand side can be transformed by repeated substitutions into the right-hand side.

Proof. We use induction on the length of the left-hand side of (6.4). Since the operators T_{p} are invertible as transformations on L_{F}, we can cancel equal terms off the left ends of our words whenever they appear. Note that this cancellation is used only as a matter of convenience in the argument.

Using equation (6.2) and replacing q by τ we obtain

$$
x+(-\tau) y+(-\tau)^{2} z+\cdots=u+(-\tau) v+(-\tau)^{2} w+\cdots
$$

Applying the automorphism of R and setting $\mu=-\tau^{\prime}=\tau^{-1} \in(0,1)$ we have

$$
\begin{equation*}
x+\mu y+\mu^{2} z+\cdots=u+\mu v+\mu^{2} w+\cdots \tag{6.5}
\end{equation*}
$$

We observe that

$$
\begin{equation*}
\sum_{j=2}^{\infty} \mu^{j}=1 \quad \mu+\mu^{2}=1 \tag{6.6}
\end{equation*}
$$

It is already immediate from equation (6.5) that if one side of (6.4) is empty then so is the other. We assume then that neither side is empty. Furthermore, if $x=u$ we can drop the terms T_{x} and T_{u} and reduce the length. Henceforth we assume that $x \neq u$. Then in view of (6.6) and the R-independence of the elements of B, we have from (6.5) that

$$
v=x
$$

and similarly

$$
y=u \neq x
$$

so (6.5) becomes

$$
\begin{equation*}
x+\mu y+\mu^{2} z+\cdots=y+\mu x+\mu^{2} w+\cdots \tag{6.7}
\end{equation*}
$$

This already excludes the possibility that either the left- or right-hand sides have length less than 3.

If the left-hand side has length 3 then from (6.6) we see that $z=y$ and

$$
x=\mu x+\mu^{2} w+\cdots
$$

from which $w=x$ and the right-hand side also has length 3 . Thus our original equation reads

$$
T_{x} T_{y} T_{y}=T_{y} T_{x} T_{x}
$$

which is part of (QCM). Similar considerations dispose of the case that the right-hand side has length 3 .

We now suppose that both sides have length greater than 3 and write (6.5) as

$$
\begin{equation*}
x+\mu y+\mu^{2} z+\mu^{3} z_{1}+\cdots=y+\mu x+\mu^{2} w+\mu^{3} w_{1}+\cdots \tag{6.8}
\end{equation*}
$$

On the left-hand side we still need to make up $(1-\mu) y=\mu^{2} y$. Since $\sum_{j \geqslant 4} \mu^{j}=\mu^{2}$ we need at least one of z or z_{1} to be y. Similarly one of w or w_{1} is equal to x.

Case I $(z=y)$. In this case our relation reads

$$
T_{x} T_{y} T_{y} T_{2_{1}} \cdots=T_{y} T_{x} T_{w} \cdots
$$

and so by (QCM) we get

$$
T_{y} T_{x} T_{x} T_{z_{1}} \cdots=T_{y} T_{x} T_{w} \cdots \cdots
$$

Cancelling reduces the length and we are done by induction.
Case $2(w=x)$. This is similar to case 1.

Case $3(z \neq y, w \neq x)$. We have

$$
x+\mu y+\mu^{2} z+\mu^{3} y+\cdots=y+\mu x+\mu^{2} w+\mu^{3} x+\cdots
$$

If $z=x$ then $\mu+\mu^{3}+\ldots<\mu+\sum_{i=3}^{\infty} \mu^{i}=2 \mu$ must exceed $1+\mu^{2}$, which is false. Thus $z \neq x$, and similarly $w \neq y$. Now we claim that $w=z$, for if not then $\sum_{i=4}^{\infty} \mu^{i}=\mu^{2}$ must exceed μ^{2}, which is false. Thus

$$
\begin{equation*}
x+\mu y+\mu^{2} z+\mu^{3} y+\cdots=y+\mu x+\mu^{2} z+\mu^{3} x+\cdots \tag{6.9}
\end{equation*}
$$

To complete the content of y on the left-hand side of (6.9) we need $\mu+\mu^{3}+\cdots=1$ and so $\mu^{3}+\cdots=\mu^{2}$.

Thus we either have a term $\mu^{4} y$ or $\mu^{5} y$ If there is no μ^{4} term then we have

$$
\mu^{3}+\mu^{5}+\cdots=\mu^{2}
$$

and so we have either μ^{6} so $\mu^{3}+\mu^{5}+\mu^{6}=\mu^{3}+\mu^{4}=\mu^{2}$, or μ^{7}. (Otherwise, $\sum_{i=8}^{\infty} \mu^{i}=\mu^{6}$ shows that we cannot arrive at μ^{2}.) Repeating this argument we see that, due to finiteness of the left-hand side, we have to have a solution

$$
\mu^{3}+\mu^{5}+\cdots+\mu^{2 k-1}+\mu^{2 k}=\mu^{2} \quad \text { for some } k
$$

Thus the left-hand side of (6.4) is

$$
T_{x} T_{y} T_{z} T_{y} T_{z_{1}} T_{y} T_{z_{2}} T_{y} \ldots T_{z_{m}} T_{y} T_{y} T_{z_{m+1}} \ldots
$$

From (QCM) we have $T_{2_{m}} T_{y} T_{y}=T_{y} T_{z_{m}} T_{z_{m}}$, and this initiates a chain of reductions resulting in

$$
T_{x} T_{y} T_{y} T_{z}^{2} T_{z_{1}}^{2} \ldots T_{z_{m}}^{2} T_{z_{m+1}}^{2}
$$

Finally, after one more replacement, we have transformed the left-hand side to $T_{y} T_{x}^{2} T_{z}^{2} \ldots$ and we can cancel terms from the left- and right-hand sides thereby reducing the length. \square

Corollary 6.10. \mathcal{F}_{B} is isomsorphic to the free monoid \mathcal{M} with generators $t_{x}, x \in B$, and relation

$$
t_{x} t_{y}^{2}=t_{y} t_{x}^{2} \quad \text { for all } x, y \in B
$$

In particular \mathcal{F}_{B} is embeddable in a group.
Proof. Let $f: \mathcal{M} \longrightarrow \mathcal{F}_{B}$ be the unique monoid homomorphism with $f\left(t_{x}\right)=T_{x}$. Suppose that $f\left(t_{x_{1}} \ldots t_{x_{k}}\right)=f\left(t_{y_{1}} \ldots t_{y_{l}}\right)$, where $x_{1}, \ldots, x_{k}, y_{1} \ldots, y_{k} \in B$. Then

$$
T_{x_{1}} \ldots T_{x_{k}}=T_{y_{1}} \ldots T_{y_{1}}
$$

and by using the relation $T_{x} T_{y}^{2}=T_{y} T_{x}^{2}$ we may rewrite the left-hand side as the right-hand side. The same replacements in the t^{\prime} s show that $t_{x_{1}} \ldots t_{x_{k}}=t_{y_{1}} \ldots t_{y_{1}}$.

References

[1] Chen L and Moody R V 1993 to appear
[2] Coxeter H S M 1975 Regular Polytopes (New York. Dover)
[3] Moody R V and Patera J 1993 Quasicrystals and icosians J. Phys. A: Math. Gen. 26 2829-53
[4] Moody R V, Patera J and Rand D 1993 Macintosh Software simpLie v. 2 (Montreal: Publications CRM, Université de Montréal)
[5] Moody R V and Weiss A 1993 On shelling E_{y} quasicrystals, to appear

[^0]: * Work supported in part by a grant from the Natural Sciences Research Council of Canada.
 § E-mail address: rvm@jazz.math.ualberta.ca

